
12 Angry Developers
AQualitative Study on Developers’ Struggles with CSP

Sebastian Roth, Lea Gröber, Michael Backes, Katharina Krombholz, and Ben Stock
CISPA Helmholtz Center for Information Security

{sebastian.roth,lea.groeber,backes,krombholz,stock}@cispa.de

ABSTRACT
The Web has improved our ways of communicating, collaborating,
teaching, and entertaining us and our fellow human beings. How-
ever, this cornerstone of our modern society is also one of the main
targets of attacks, most prominently Cross-Site Scripting (XSS). A
correctly crafted Content Security Policy (CSP) is capable of effec-
tively mitigating the effect of those Cross-Site Scripting attacks.
However, research has shown that the vast majority of all policies
in the wild are trivially bypassable.

To uncover the root causes behind the omnipresent miscon-
figuration of CSP, we conducted a qualitative study involving 12
real-world Web developers. By combining a semi-structured inter-
view, a drawing task, and a programming task, we were able to
identify the participant’s misconceptions regarding the attacker
model covered by CSP as well as roadblocks for secure deployment
or strategies used to create a CSP.

1 INTRODUCTION
Nowadays, Web applications are getting more and more important
for both business and private life. They evolved from documents
presenting information into sophisticated fully-fledged office and
entertainment applications. Thus, the Web as a platform plays an
essential part of our daily lives. Since critical applications like online
banking are implemented on the Web platform, attacks against its
users are getting more severe. By abusing Cross-Site Scripting (XSS)
vulnerabilities in those applications, an attacker can steal session
cookies to impersonate the victim, perform actions on behalf of
the victim like issuing bank transactions, and a plethora of other
devastating actions. To mitigate the effect of those attacks from the
Web application itself, browsers support Content Security Policy
(CSP). By deploying such a policy, a Web developer can specify
a list of allowed JavaScript sources and prohibit the execution of
inline scripts, making it hard or even impossible for an attacker to
execute their malicious payload.

Although CSP may sound like the holy grail of Web Security, it
suffers from several issues. Research has shown that the majority
of all policies deployed by real-world Web sites are trivially bypass-
able because they either allow the execution of inline JavaScript or
allow all resources of a specific scheme. If inline code is allowed, the
attacker can directly inject a script tag or an event handler that exe-
cutes the attack payload. In case of allowing a scheme, e.g., https:,
the attacker can inject a script tag that loads a payload via https:
that is under their control. Through free certificate authorities like

ACM Conference on Computer and Communications Security, 14-19 November 2021, Seol,
Korea
2021. ACM ISBN TODO. . . $15.00
https://doi.org/TODO

Let’s Encrypt [23], attackers can easily host resources under their
control at https: URLs without any cost or travails.

The fact that policies are insecure in the wild has been doc-
umented by numerous works [7, 42, 47, 55, 56], but the reasons
remained largely hidden. In order to understand the nature of such
insecure practices, Roth et al. [42] investigated the HTML docu-
ments of Web applications. Here, they found high reliance on inline
event handlers, which are not trivial to allow by a CSP. To un-
derstand why developers tend to use old and deprecated security
mechanisms like X-Frame-Options instead of using the easy-to-
use features of CSP for that use case, they also sent out a survey to
those sites. Through this, they discovered that developers are often
not knowledgeable about all CSP capabilities and that its complex
content control mechanism is blocking the easy-to-use features of
CSP for framing control and TLS enforcement. Importantly, none of
the prior works actively focus on the developers and their mindset,
experience, and problems when deploying a CSP.

To close this gap in research regarding CSP, we conducted a study
with 12 developers who are familiar with the development of a CSP.
The study consists of (1) a semi-structured interview, including a
drawing exercise, and (2) a coding task involving creating a CSP
for a small Web application. Our findings suggest that not only the
complexity of the mechanism but also inconsistencies in how the
different browsers and frameworks handle and support CSP and
how they report and assist the developer during CSP deployment
cause issues. In addition to that information sources regarding CSP
not only push developers in wrong directions but nearly emphasize
the usage of insecure practices in the policy.

To sum up, our work provides the following contributions:
(1) We present the first qualitative study with 12 real-worldWeb

developers to evaluate the usability of the CSP.
(2) We investigate the Web developers’ mindset regarding the

different attacker models that CSP covers.
(3) We uncover the root cause of insecure CSP deployment in

order to improve the usability of the security mechanisms’
initial deployment.

(4) We provide a methodological discussion of conducting an
online interview study along with coding and drawing tasks
with developers and share the lessons learned from that.

2 BACKGROUND & RELATEDWORK
Due to this work’s focus on misconceptions about CSP and the
usability of CSP deployment, this section describes details about
the security mechanism itself, the threat model that is originally
mitigated by CSP, as well as Web-related user studies, and a brief
overview of qualitative methodologies used in usable security.

1

https://doi.org/TODO

2.1 Cross-Site Scripting
The most basic security mechanism incorporated in every browser
is the Same-Origin Policy (SOP). In essence, it protects distrusting
pages from each other by ensuring that only documents with the
same Origin [2], i.e., matching protocol, hostname, and port, can
access each other’s content. By performing a Cross-Site Scripting
(XSS) attack, an adversary can execute JavaScript in the origin of
a vulnerable Web page, and this code has the same capabilities
as the document’s legitimate one. It can modify the page content
to the attacker’s liking, exfiltrate sensitive information such as
session cookies, steal login credentials, or perform any action on
behalf of the victimized user. Since its initial discovery back in
1999 [40] a plethora of publications focus on these attacks [19–
21, 24, 27, 32, 33, 39, 43, 46, 49], their different variants, and their
individual impacts, showing that XSS is here to stay.

2.2 Content Security Policy
XSS attacks can cause severe harm to the users of a Web appli-
cation. In order to mitigate the effect of those unintended code
executions, Stamm et al. [45] introduced the Content Security Pol-
icy (CSP). By deploying such a policy, e.g., via an HTTP header, a
developer can control which sources are allowed for certain types
of resources, such as scripts or images. A policy consists of mul-
tiple (semicolon-separated) directives, each followed by a list of
source expressions. Such an expression is a representation of an
allowed content source for the directive. All the so-called fetch di-
rectives, such as script-src or img-src (for images) fall back to
default-src if the more specific directive is missing. As an exam-
ple, a policy that restricts scripts to be hosted on the same origin
as the including page as well as ad.com and disallows any other
content to be loaded from anywhere can be enforced as follows:
default-src ’none’; script-src ’self’ ad.com;

Implicitly, when either script-src or default-src are deployed,
inline scripts, event handlers, and functions that perform a string-
to-code transformation (e.g., eval) are forbidden. In order to re-
enable these dangerous constructs, a developer can specify the
’unsafe-inline’ or ’unsafe-eval’ source expressions, thereby
explicitly opting out of security.

In CSP’s initial version, inline scripts could only be enabled
through a policy that contains ’unsafe-inline’ [51]. However,
the presence of this expression undermines any protection capa-
bility of CSP, as the attacker can simply inject inline JavaScript
into a vulnerable page. Hence, the only solution to this problem
was to externalize inline scripts, requiring significant engineering
effort. Even though academic approaches to automate this task
exist [14, 38], policies remained insecure from the first analyses in
2014 through 2020 [7, 42, 55, 56].

In order to both ease the way of allowing inline script as well as
improving the security of CSPs in the wild, the second version of
CSP [52] added support for nonces and hashes to the script-src
directive. This mechanism allows the developer to explicitly allow
their scripts. Specifically, they can either add hashes of allowed
scripts or a nonce to the policy. While the former implies that any
script which matches an allowed hash is executed, the latter implies

that scripts which carry the nonce in their nonce property can be ex-
ecuted. Since the nonce is randomly generated, it cannot be guessed
by an attacker, leaving them unable to inject a script that would
execute, yet allowing the developer to have their scripts execute.
To still provide backward compatibility for CSP Level 1 browsers,
the ’unsafe-inline’ expression is ignored if nonces are present, such
that the inline scripts are still executed in old browsers that do
not support nonces or hashes. Notably, event handlers cannot be
allowed through nonces. However, the most recent draft of the
CSP Level 3 living standard adds the ’unsafe-hashes’ keyword
to enable hashed event handlers.

Once a script is loaded, it can add arbitrary other scripting re-
sources. On theWeb, this frequently occurs, particularly with newly
added hosts, in the context of advertisements. This forces the CSP
author to either regularly update their policy or risk breakage.
To address this problem, Weichselbaum et al. [55] proposed the
’strict-dynamic’ expression, which is, in the meanwhile, present
in the living standard of CSP Level 3 [53]. If this expression is
present, a trusted script – explicitly allowed through its hash or
through being nonced – can propagate its trust to programmati-
cally added scripts, which do not have to be explicitly allowed in
the script-src directive. Because deploying ’strict-dynamic’
only works if hashes or nonces are present, it also means that
’unsafe-inline’ has no effect if it is present.

Since developing and deploying a CSP is a tedious task which
can cause breakage when not properly tested, CSP can also be
delivered as a report-only policy. In that case, violating resources
are not blocked, but instead, a report is generated to address the
potential breakage before it occurs in enforcement mode. For both
enforcement and report-only modes, CSP supports the report-to
and report-uri directives, which specify a logging endpoint to
which violation information is sent.

CSP has been the subject of many studies over the years, which
all showed that policies in practice are mostly insecure [7, 42, 55,
56]. Moreover, even in cases where a CSP is secure, consistent
deployment across the entire origin often lacks behind, opening
the door for bypasses [9, 44]. Deploying a functional CSP is made
increasingly harder through browser extensions that inject content,
thereby causing breakage and/or false warnings [18].

As shown by Steffens et al. [47], the vast majority of sites have at
least one third party that interferes with CSP through practices that
require ’unsafe-inline’ or rely on APIs like document.write to
add scripts, making them incompatible with ’strict-dynamic’.
To investigate the evolution of CSP over the course of time, Roth
et al. [42] conducted a longitudinal analysis of deployed CSPs from
2012 until the end of 2018. They found the majority of CSPs were
trivially bypassable, e.g., because of the usage of ’unsafe-inline’
or http://* expressions, for long periods of time, or sites gave up
after experimenting with report-only mode.

We pick up on this notion of a CSP which is not trivially by-
passed, and refer to it as a sane CSP. While other bypasses exist,
e.g., through JSONP endpoints [55] or open redirects [41], such a
sane policy nevertheless indicates that it is not trivial to bypass, but
rather requires certain preconditions to be insecure. While prior
work has documented the technical struggles in deploying CSP
from an empirical and quantitative point-of-view, they fall short
of understanding the reasons behind this failure. Roth et al. [42]

conducted a short survey about CSP in the context of their notifica-
tion around framing control but could only generally report that
developers have misconceptions about CSP.

In this paper, through a qualitative study with developers with
CSP experience, we dive much deeper into the roadblocks of CSP
and outline how they align with technical challenges and human
misconceptions.

2.3 Qualitative Methods
Qualitative and quantitative research methods complement and
benefit from each other. This is due to the different perspectives
that the two approaches offer [1]. Quantitative research follows a
"top-down" approach [25] that requires well-founded hypotheses.
These may be constructed based on theories from qualitative re-
search, among other sources. As a "bottom-up" approach [25], qual-
itative research is particularly useful to explore new areas where
prior research cannot be relied upon, or to explore the origins of
behaviors and misconceptions, for example. In our case, we use the
strengths of qualitative methodology to uncover root causes of the
phenomena that previous quantitative work identified [42]. One of
the most prominent qualitative methods is interviews. In particular,
semi-structured interviews can be used to understand the problems,
perspectives, and needs of administrators [29], developers [30],
end-users [22, 26, 29] better. While open-ended questions allow
exploring a topic broadly, the interviewer can deviate from the in-
terview guideline as soon as an interesting concept emerges. Upon
appropriate follow-up questions, interviewees provide insights into
their thoughts, reflect and share their insights and ideas. This depth
and data quality distinguishes interviews, and is difficult to obtain
with other methods such as surveys. However, interview studies
are costly, which is reflected in a relatively small sample size [31].

Another methodology that is well-suited for collecting quali-
tative data is a lab study. A particular advantage of lab studies
is the controlled setting, where researchers can change factors at
will to observe possible effects. Thus, lab studies are very versatile
and, depending on the study design, quantitative and/or qualita-
tive data can be collected. For example, study participants’ actions
can be recorded in video and audio, and they can be encouraged
to think-aloud. This helps to understand better the motivations
behind decisions, misunderstandings, and mistakes [31]. Gorski
et al. [17] conducted a between-subjects lab study to investigate if
the enforcement of a CSP per default affects the usability of a Web
framework. They also evaluated the effectiveness of CSP warnings
in the developer console of Chrome and Firefox. They recruited
30 students from their local university and made them use the
Java-based Play framework on Windows via the IntelliJ IDEA IDE
to create a Web site embedding a specific point on Google Maps.
After completing this coding task, the students also took part in a
semi-structured interview. Their findings suggest that enforcing
CSP usage per default in IDEs does not lead to increased security.
Notably, there is a discussion on how far students can be recruited
instead of developers for developer-centric topics [35, 36]. In our
case, this was not an option, as we heavily rely on real-world experi-
ence to uncover root causes for CSP’s poor adoption rate. However,
as Lazar et al. [31] point out, it can be challenging to recruit “spe-
cialized populations, such as highly trained domain specialists”, as

is the case with CSP knowledgeable Web developers. Hence, we
decided to conduct a controlled online coding task to mitigate the
impact of geographic location on our recruitment.

Drawing tasks can be powerful to visualize participants’ un-
derstanding of a system or concept [3]. If needed, for example, to
reduce the drawing effort in an online setting, the participant is
given a template to complete. Participants then explain their un-
derstanding of the system as they draw. In security and privacy
research, drawing tasks have, among other things, already been
used to explore user’s understanding of the internet [26], and end
users’ and administrators’ understanding of HTTPS [29].

3 METHODOLOGY
To uncover the underlying problems in the CSP deployment pro-
cess, we examine developers’ mental models of CSPs, as well as
their real-world experiences with the mechanism. We complement
the data with insights from a controlled coding task. Hence, we
provide in-depth qualitative results that fill the gaps of previous
quantitative studies [42]. Our findings can be used to improve
the mechanism and ultimately remove roadblocks to its successful
adoption. Accordingly, we answer the following research questions:
RQ1: What are the root causes of insecure practices when deploy-

ing a CSP?
RQ2: What strategies do developers adopt when creating a CSP?
RQ3: How well do developers understand the associated threat

models of CSP?
RQ4: What are the perceptions and motivations of developers in

terms of deploying a CSP?
We carefully designed our qualitative study to account for the

research questions. Thus, we combined semi-structured interviews
with a controlled coding task to cover both real-world experiences
and in-situation programming, which allows us to take a holistic
view of the topic. Our study consists of three parts: (1) a 3min
screening survey that covers basic information about the partici-
pants’ demographics and their familiarity with the technologies
involved in CSP. We use this information to ensure that our set of
participants is as diverse as possible; (2) a 45min semi-structured
interview covering perceptions and prior experiences with CSP, as
well as a drawing task about associated threat models of CSP; (3) a
45min coding task in which participants created a CSP for a small
Web app in a programming language of their choice (Python, JS, or
PHP). The following sections provide details on each part of our
methodology, the methods and choices regarding study population
and recruitment, as well as evaluation and ethical considerations.

3.1 Screening Survey
Our screening survey is a self-built and self-hosted Web applica-
tion, including a sane CSP. The self-hosting under a subdomain
of our research institution provides us exclusive and full control
over the data entered into the survey. The survey itself consists
of 16 questions, with the time required to answer them no more
than three minutes. The landing page of the survey also reminds
the participant about the number of questions and the time re-
quired to answers all questions (see Appendix A.1). In addition to
that, they are informed that all answers are optional (except for
the contact email), as well as the fact that the collected data will

be used for scientific purposes only. First, we ask questions about
security decisions within their working environment. Notably, we
also ask for which Web application the participant takes part in the
deployment or maintenance of CSP, asking them to supply a URL
if possible (see Appendix A.2). In case of inviting a participant to
our interview, we use this link to the Web application to customize
the semi-structured interview. We either focus on the root cause of
certain insecure expressions used in their CSP, or we ask the partic-
ipant how they arrived at their secure policy and what roadblocks
occurred during that process. Further, we ask questions regarding
technology perception and security awareness when using Web
applications (see Appendix A.3). Last, we ask for demographics
covering age, gender, profession, education, home country, and the
company size [50] (see Appendix A.4).

As soon as a candidate completes the questionnaire, assess if they
are suitable and send an invitation email. In doing so, we filtered
out bots and paid particular attention to prior experience with
CSP. The invitation email (see Appendix F) contained the following
information: (1) a reminder about the study compensation of 50
Euro (as an Amazon gift card) and the fact that the study will be
recorded; (2) a detailed description of the study procedure including
a schedule; (3) detailed choices about the coding task, as well as
video conferencing systems. In our study, we pay special attention
to making the participants feel as comfortable as possible and to
replicating their usual programming environment as closely as
possible. Therefore, we offer our participants the greatest possible
freedom concerning the configuration of the coding task, choice of
video conferencing software, and choice of the study date [34].

3.2 Interview
The interview consists of three blocks: (1) General questions on
the participant’s work in the company and educational background.
These easy-to-answer questions provide an introduction to the
interview and also act as a warm-up. However, the questions are
designed in a way such that the participants might also give us valu-
able information regarding their mindset about CSP, and how they
first got in contact with the mechanism. (2) Threat Model covered
by CSP: This block covers attacker capabilities, different use cases
for CSP, as well as the process of decision-making that leads to a
(secure) CSP. Those questions are supplemented by a drawing task
in which participants draw and explain the a XSS attack of their
choice in detail. For this purpose, we provide the participants with
a graphic containing four stakeholders: The attacker, the victim,
the vulnerable server, and an attacker-controlled server (see Fig-
ure 1). The drawing is done either via Zoom’s Annotate feature or
alternatively with enabled screen sharing and diagrams.net [13].
After finishing the drawing, we ask the participants at which point
of this attack a CSP could successfully stop exploitation.

While Roth et al. [42] already hinted that XSS mitigation is the
prominent use-case for CSP deployment, this block of our inter-
view enables us to get a deeper understanding of the underlying
threat model that developers have in mind when dealing with CSP.
Furthermore, it allows us to see which of the different use-cases
of CSP (XSS mitigation, framing control, TLS enforcement) is the
most prominent and how knowledgeable each participant is about
CSP’s full capabilities. The third part of the questions regarding

Victim

Attacker vuln.com

evil.com

Figure 1: Template for XSS/CSP Drawing Task

(3) Roadblocks for CSP is customized towards the participant.
In the screening questionnaire, we ask the participants for (a list
of) domains for which they took part in the deployment or mainte-
nance of a CSP. If provided with a URL, we then rely on the live and
Internet Archive version of the said domain to determine if this CSP
is secure, insecure (i.e., trivially bypassable), or the company gave
up on CSP by eventually dropping the header. Depending on which
of the three groups the study participant falls into, we ask different
questions. In essence, we ask participants that have worked on poli-
cies without any insecure practices, such as the unsafe keywords,
how they managed to achieve this and which roadblocks they faced
during this achievement. In contrast, we ask those with a trivially
bypassable policy what caused the usage of certain insecure prac-
tices in their CSP. Finally, for those who gave up on CSP, we ask
why they aborted their experiment of deploying a CSP and what
changes would be required before they would consider attempting
CSP deployment again. During this block of questions, we not only
want to hear about their stories of CSP deployment, but we also ask
about tools and consulting that helped them during this process.
The complete interview guideline can be found in Appendix B.

3.3 Coding Task
In the coding task, we ask each participant to create a CSP that
mitigates the effect of XSS attacks for a small Web application. We
inform the participants that they can use any resources throughout
the task to make sure that we are simulating their usual program-
ming behavior as closely as possible. During the procedure, the
participants are asked to share the screen such that we can observe
their coding behavior during the experiment. Furthermore, we ask
them to think aloud during the task, such that we not only see
what they are doing but also understand the decisions made during
development. The task is available in three different Web backend
languages. Here we looked up the most popular programming lan-
guages in 2020 and checked if there is a popular Web framework
in that language. As a result, we created the same Web applica-
tion in JavaScript (Express), Python (Django), and PHP (Twig). In
all cases, we build the functionality in a very similar way, e.g.,
by using the Jinja2 templating language for the HTML files in
all three cases. By doing so, we make sure that the choice of the
programming language is not interfering with the complexity of
the task. After choosing their preferred language, the participants
download the corresponding source code (<2MB) and ideally use
docker-compose to start the application. However, if they do not
want to use docker, we also provide alternatives like an install
script for Linux-based systems, which also includes the Windows

Subsystem for Linux (WSL), or downloading and importing a pre-
configured virtual machine for virtual box. In addition to that, we
offer the opportunity to remote control this VM using Zoom, or
alternatively use TeamViewer [15]. The source code changes of the
Web application can then be done in the participant’s favorite IDE,
such that they feel as comfortable as possible.

As laid out by several prior works [7, 55, 56] and more explic-
itly by Roth et al. [42] and Steffens et al. [47], deploying CSP is
made harder if certain constructs are used in a Web application, in
particular ever-changing third-party inclusions, inline scripts, and
inline event handlers. Since we aim to understand how develop-
ers understand these roadblocks and find solutions, we build our
application with such roadblocks in place. The goal is to investi-
gate if, how, and why the participant resolves these issues. In most
cases, multiple solutions are possible, broadening the exploration
space. If the participant, for example, uses nonces to fix the inline
JS, it is interesting to see how the nonces are generated, as well
as how they are placed on the script tags. Overall the goal of this
coding task is to enrich the data we got from the interview with
real hands-on coding experiences with CSP. By conducting this
coding task, participants can also recall roadblocks and challenges
that they forgot to mention during the interview such that the data
that we gather is as complete as possible.

3.4 Pre-Study
We conducted a pre-study to ensure that our interview guideline is
appropriate to provide answers to our research questions, to identify
errors and inconsistencies in the coding task and its setup, and, to
give the interviewer the opportunity to practice. The pre-study
consisted of two steps. First, we had the interview and coding task
tested separately, each by a person knowledgeable in the respective
area. A researcher created a persona representative of our study
population and took the role of this persona for the first interview
test. Another researcher familiar with CSP tested the coding task.
In the second step, we conducted three complete runs of interviews
followed by the coding task. We recruited two students and one
web developer who had experience with CSP. In doing so, we made
sure to cover each programming language once. The results of the
pre-study are not included in the results of the main study. Based
on the pre-study, we slightly changed the order of the questions,
among other things, to ensure a more natural interview flow. We
also included code snippets in the coding task that could be used as
templates to programmatically add events. This was to ensure that
the participants had enough time to focus on creating the CSP, as
searching for the right syntax in the pre-study took a lot of time.

3.5 Recruitment and Participants
Our target population is real-world developers that actively de-
ployed, try to deploy, or are testing a CSP. To get in touch with this
group, we first tried to find participants using our national chapter
of the Open Web Application Security Project (OWASP) Founda-
tion. By using this channel, we are not only reaching developers
of big Web applications behind known companies but also small
development teams, which increases the diversity in our study pop-
ulation. In addition to the tweet of the OWASP, researchers of our
institution held a talk at an OWASP event and promoted our study

to all attendees. For the invitation via the OWASP, we created a
poster with all necessary information about our study (see Appen-
dix C). Those include the goal and the procedure of the study, as
well as the amount of time required for participation and the com-
pensation. In addition to that, we also used targeted advertisements
on the business social network LinkedIn. Similar to the poster for
the OWASP recruitment, we designed a sponsored content post
(see Appendix D) that includes the goal, the procedure, the time
required, and compensation. The advertisement was targeted to-
wards Web developers and associated with the official account of
our institution to underline the soundness of the invitation.

We also tried other recruitment techniques, which did not lead
to any new possible participant completing our screening survey.
We created a recruiting email (see Appendix E) that we sent to the
set of contact email addresses extracted from the WHOIS entries of
Alexa Top 10,000 sites that are using CSP. These invitation emails
were sent from an institutional email account to ensure that the
possible participants see this as a reliable offer. We also tried direct
recruiting people by callingWeb development companies via phone.
Here we used an official phone number that is associated with our
institution in order to increase trust. In general, we can confirm that
the recruitment of a specialized population, such asWeb developers,
who are knowledgeable in CSP, is very challenging [31].

3.6 Data Analysis
We manually transcribed all collected data, including the coding
and drawing task. Afterward, we unitized [10] the transcript and
conducted open coding according to Strauss and Corbin [48] to
analyze the data. For the analysis of the drawing and coding task,
we additionally used the screen recordings to ensure no information
is missed. In total two coders (the core authors) were involved in
the coding process and construction of the codebook. The first
coder constructed an initial version of the codebook, taking into
account two interview transcripts. Based on the initial codebook,
both coders coded all interviews, resolving issues and adjusting
the codebook accordingly after each iteration. We continued with
the coding procedure until both coders agreed that saturation was
reached. In our case, this meant no new concepts emerged from the
newest two interviews. We calculated the intercoder reliability of
the different codebook versions before resolving issues. With the
saturated version of the codebook, we re-coded all interviews to
ensure that no information was missed during the initial coding.
The final codebook is attached in Appendix I.

Codes are partitioned into high-level primary codes and more
detailed secondary descriptions. For example: if a participant com-
plained during the interview about the false positives in CSP’s
report feature, the corresponding primary code is “Roadblock” and
the secondary code is “False Positive Reports”. Using this way of
assigning codes, we made sure that we can better evaluate which
roadblocks occurred, which strategies were used, and which moti-
vations and perceptions the participant had during working with
CSP. We applied thematic analysis [6] to the coded data to identify
emerging themes and patterns. Thenwe conducted axial coding [48]
to investigate the relationship between themes. To this end, we in-
vestigated co-occurrences of codes. For example, we analyzed links

between strategies and roadblocks and explored the origin of mis-
conceptions. We then used the combined results to identify strong
factors which lead to success or failure of deploying a sane CSP.

3.7 Ethical Considerations
We carefully considered risks and benefits for participants when
developing the study design, especially as some data collection
methods may be perceived as invasive. Especially the installation
script in case of the direct deployment of our coding task on the
participant’s machine may be perceived as invasive. However, we
wanted to be as close as possible to the participant’s normal cod-
ing behavior, so we decided to offer the docker file and the direct
execution option. Notably, every participant had the free choice
of using the provided VM or remote access. We informed all the
study participants about the screen and audio recording before
and during the online interview. All participants gave their elec-
tronic (pre-questionnaire) and verbal (beginning of the interview)
consent to data collection and processing. This data is processed
and stored in compliance with the General Data Protection Regula-
tion (GDPR). In addition to that, the study methodology and data
collection processes have been approved by our institution’s ERB.

4 RESULTS
In this section, we present participant demographics and results
of our thematic analysis. The inter-coder reliability Krippendorff’s
𝛼 [28] was between 0.71 and 0.92 for each version of the code-
book. Our results shed light on why people decide to deploy a CSP
and how they perceive the mechanism. Additionally, we examine
roadblocks for a secure deployment of a CSP, as well as the types
of strategies used during this procedure. Here, we combine find-
ings from the interview, which give us real-world insights into the
work environment of our participants, with results from the coding
task, which reveal concrete technical and conceptual problems in
creating a CSP. We support our findings with participant quotes
(translated verbatim into English where necessary).

4.1 Participant Demographics
Our study population includes both male and female participants.
Their age ranges from 20 to 50 years (survey captures ten-year
ranges). The participants’ employers range from SMEs (<9 people)
to big companies with over 250 employees.While seven participants
stated that the Web presence is the main business of their company,
this was not the case for three of them, and one participant did
not provide an answer to this question. The detailed demographic
of the 11 participants that completed the survey is depicted in
Appendix G. The majority of participants (eight) are located in
Germany, but we also had participants from Czechia, Ireland, and
the United Kingdom. Their education level was divided into three
master’s degrees, three people with bachelor degrees, two with
a software developer apprenticeship, one who only specified the
education level as secondary degree, one that entered "degree" into
the text field, and one that did not answer this question. For their
current occupation, all of our participants entered different Job
titles: Software Security Engineer, Freelancer / Developer, Software
Development Manager, Analytics & Business Intelligence, Founder,
Ph.D. Student, Software Developer, Student, AppSec Specialist, Web

External Motivations

Pentest / Consulting
Additional Security Layer
Reputation
Role Model
Security Training
Build Pipeline Warning
Financial Implications

Attack Mitigation

XSS Mitigation
Resource Control
Framing Control
TLS Enforcement
Data Connection Control

Figure 2: Categories of Motivations

Developer, and a Student Jobber. Note that all participants had prior
experience with CSP and (have) worked for or founded a Web
company. The last involvement in the maintenance or deployment
of CSP was still ongoing for three participants, in the last week for
one participant, within the last month for four, and more than a year
ago for three participants. Throughout the interview, we also asked
the participants if they have an IT security background. While six
participants stated that they had courses that targeted security, or
especially Web security, in their free time or during their studies,
the other half of our participants noted that they had no security
background but self-taught knowledge about Web security.

4.2 Motivation for CSP
When asked about their motivation to deploy a CSP, participants
referred either to threat models associated with CSP or external fac-
tors such as financial implications. Figure 2 provides an overview of
the concepts. Most prominently, participants explicitly mentioned
XSS mitigation (five), as well as pen-tests and consulting (four) as
their primary motivation.

Among others, external factors include penetration tests, con-
sulting, or build-pipeline warnings complaining about a missing
CSP. One participant also mentioned that he attended a security
training that suggested deploying a CSP to protect the application.
Also, the effect of a missing CSP on the company’s reputation is one
reason why companies decide to use CSP. Concurrent to this, big
or known companies see themselves as role-model for others and
therefore should include a CSP. Seven participants perceived CSP
as an additional security layer that kicks in if all other measures,
such as secure coding practices, fail. Notably, seven participants
also mentioned positive side-effects that they discovered during
their CSP journey. For example, during the deployment process,
they re-evaluate the resources used by the application and whether
they are still required for the application’s functionality. Also, the
re-evaluation of the application structure was something that the
participants mentioned as a benefit during CSP deployment.

4.2.1 Threat Models governed by CSP. In addition to the threat
model-based motivations to deploy a CSP, the participants also
mentioned their perceptions of CSP. We also talked with the par-
ticipants about the different capabilities of CSP and discovered
knowledge gaps regarding CSP.

XSS Mitigation: Five participants explicitly stated that the pri-
mary motivation for using a CSP was to mitigate XSS, making this

the most prominent motivation. Each of them perceived the CSP as
an additional security mechanism stating, for example, "I started
learning about XSS, and then I became interested in the solutions to
XSS. And of course, you know, you start on the road of input sani-
tization, output in coding and then eventually, CSP also, you know,
becomes a factor."(P5). The perception that CSP can mitigate the ef-
fect of XSS attacks was present in ten interviews. Eight participants
knew how CSP could mitigate the effect of XSS. However, three par-
ticipants had misconceptions on how and where CSP kicks in. For
example, they thought that CSP only forbids the connections to the
attacker’s server or that CSP prevents the attacker from injecting a
malicious payload to the server-side in case of a stored XSS. Closely
related to the XSS mitigation use-case of CSP is the participants’
perception that CSP can be used to control the resources included.
Also, five participants mentioned that CSP enables the developer
to have fine-grained control about data connections of the Web ap-
plication. Here, participants specifically mentioned the connect-src
and form-action directives. One participant had the attack scenario
of sensitive data exfiltration in mind. Notably, the fact that one can
simply redirect the browser to exfiltrate data because of missing
support for the natigate-to directive was not mentioned by any
participant.
During the drawing task, we identified that one of the participants
had the misconception that CSP is capable of defending against
Cross-Site Request Forgery (CSRF) attacks. Such a misconception
might lead to a scenario where certain defense techniques, like
CSRF tokens, are not used because the developer thinks of CSP as
the ”holy grail” of Web security defends against everything.

Framing Control Another known feature of CSP is the defense
against Click-Jacking attacks [37]. For one participant, this was the
main use case of CSP. One participant admits that he only knew
about this capability of CSP because information sources for the old
and deprecated X-Frame-Options header suggest using CSP’s frame-
ancestors. However, two of our participants argued that they do not
use frame-ancestors, because the X-Frame-Options header is doing
the same while having better support: "For this, we have something
else. The old XFO is, to my understanding, still well supported, so we
thought of using CSP for that. But the old blunt method is working for
us anyway. So, it did not add extra protection."(P3). Notably, XFO and
CSPs frame-ancestors are not only different functionality-wise, but
also XFO is no fully supported by every browser, which can lead to
inconsistencies [8]. If, for example, a Web sites operator deploys
XFO in the ALLOW-FROM mode, some browsers are ignoring the
entry because this mode is not well supported. In addition to that,
even if this mode works, it is not possible to allow multiple hosts
to frame a page if XFO is used.

TLS Enforcement The capability of CSP to enforce secure net-
work connections was the least known one. While talking about
this use-case of CSP, eight participant mentioned that they are
using the HTTP Strict Transport Security (HSTS) mechanism to
defend against the underlying threat model of a man-in-the-middle.
However, five out of those did not know about CSP’s capabilities to
block mixed content or upgrade insecure requests. Notably, those
features of CSP might become less relevant nowadays because
Chrome is disallowing any type of mixed content [4] and Firefox
is automatically upgrading HTTP connections [5]. Nevertheless,

Technical
Roadblocks

Application
Roadblocks

Cost-based
Roadblocks

Knowledge
Gaps

Browser
Inconsistency
Browser
Console
Messages
False Positive
Reports
Insufficient
Reports
Browser
Extensions

Inline
JavaScript
Inline Events
Framework
Support
Legacy Code
3rd-Party
Services
3rd-Party
Libraries
Different Dev
Teams
WebSockets

Engineering
Effort
CSP
Complexity
CSP
Maintenance
Amount of
Reports
Security is
Secondary
Goal
Financial
Consequences

Knowledge
about CSP
Capabilities
Information
Sources
Conceptual
Issues
Build in
Security
Features

Figure 3: Categories of Roadblocks

not all browsers behave the same way, and thus, the lack of knowl-
edge about this easy-to-use feature of CSP makes HTTPS adoption
harder for the development team because they need to take care of
HTTP URLs that are present in their application.

Key Takeaways: (1) The motivation to deploy CSP is, in the best
case, the incentive to mitigate XSS; in the worst case, it is only a
checkbox that arose from a penetration test. (2) External factors,
like the companies reputation or serving as a role model, such
that more Web sites use CSP, can be a motivation to deploy CSP.

4.3 Roadblocks of CSP
Throughout the analysis of our dataset, we identified different prob-
lems that hindered the deployment of a sane CSP without using any
insecure practices. For the thematic analysis of those, we combined
different codes and clustered them into four different categories of
roadblocks shown in Figure 3. Notably, these roadblocks are results
from both the semi-structured interview and the coding task.

The technical roadblocks are technological problems that the
Web applications operator has no control of. In contrast, the ap-
plication-based roadblocks describe problems that occur due to
the choices that the developer made when creating the applica-
tion. The Cost-based roadblocks are monetary limitations set by
the administrative level of the company or time constraints of the
Web applications operator. Finally, the category of Knowledge Gaps
includes insufficient or bad information sources, lack of documen-
tation, and knowledge about the concepts and capabilities of CSP.

4.3.1 Technical Roadblocks. One of the technical roadblocks men-
tioned by eight of our participants is the inconsistent browser sup-
port for certain CSP features. While, for example, most browsers
support the ’strict-dynamic’ source expression, Safari has not im-
plemented this feature yet, which means that the CSP is too strict
in this case and might block important features of the Web appli-
cation. Also, seven participants complained about the inconsistent
way how console messages are designed depending on the browser.
The preinstalled browser of our VM was Firefox, and participants
that use a chromium-based browser in their usual workflow missed
helpful information in the console error messages of Firefox ("Wait,
there is no hash in there." (P4)). Also, browser extensions on the
client-side might cause problems with the CSP. Some of them tend

to inject their own code into the Web Application, which will re-
sult in false-positive CSP errors which might be reported to the
development team. But not only extensions cause those errors,
but also browser features, plugins, or other client-side interactions
with the Web application can generate those reports. From the five
participants that denounce those false-positive reports, four also
complained about the level of detail in the reports send by CSP
violation events. It was mentioned that a detailed code location of
the violation, as well as a corresponding hash to allow the code
snipped, would ease the deployment and maintenance of a CSP.

4.3.2 Application Roadblocks. Some of the application-based road-
blocks are those that were hypothesized by previous work on
CSP [42]. Through the interview and especially in the coding task,
participants noted the usage of inline JavaScript (8) or inline event
handlers (8). Notably, the participants already mentioned the inline
scripts in the interview part, while the problem with event handlers
was mainly identified during the coding task. One critical point was
that the strategy to resolve the issue with inline scripts could not
be applied to the inline event problem ("I’d like to insist on attaching
such a nonce here. But I just tested. It does not accept a nonce."(P12)).
If, for example, participants use hashes or nonces for inline scripts,
they were not able to apply the same technologies to allow inline
events. Adding nonces to non-script tags is a no-op, and allowing
event-handlers through their hashes requires ’unsafe-hashes’ in
Chrome and its derivatives. Another application-based problem is
the usage of third-party code. During the interview, four partici-
pants complained that even if their code is fully CSP-compliant,
third-party services like advertisements and third-party libraries
such as Angular require them to use a more lax CSP, which might
be bypassable [47]. A similar limitation is introduced by choice of
the framework which is used to create the Web application. Six
participants explained that the choice of the framework could also
block a successful CSP deployment. Either the framework supports
CSP or not, and even if the framework itself is compliant with CSP,
its plugins might not adhere to that. Another problem that one
participant mentioned is the way how WebSockets are handled in
CSP. While some browsers allow WebSocket connections to the
domain itself if ’self’ is present, as specified since CSP level 3 [53],
others require to allow the own domain with the WebSocket proto-
col explicitly. This issue was already discussed in the CSP GitHub
repository [54], leading to a change in the living standard [53].
According to five of our participants, the presence of legacy code
in a Web application also causes problems during CSP deployment.
Usually, the development teams first build the application and later
want to add a CSP to it. Thus, the application is full of inline codes,
inline events, non-CSP compliant libraries, which makes creating a
sane CSP hard and very costly.

4.3.3 Knowledge Gaps. During the interview, we also discovered
that information sources and online tools might be counteracting
the deployment of a sane CSP. Some online security scanners only
check if a CSP header is deployed, but such tools often do not check
if the deployed policy is trivially bypassable or missing important
directives. Moreover, we identified five cases where the used infor-
mation source about CSP is misleading for the participant or gives
wrong information about CSP. Those sources are not designed to
give people the most secure solution for allowing sources (e.g., the

usage of nonces) but rather suggest allowing the third-party domain,
which is even worse than suggesting to use full URLs. Also, those
sources mislead the reader in case of inline event handler. Instead
of suggesting to add the events programmatically, they first suggest
the usage of hashes which, however, leads to inconsistent behavior
among major browsers. One result of such misguided information
available for CSP is that developers have conceptual issues with
CSP. Through the interview part, we probed participants about
the different capabilities of CSP. While the initial use case of CSP
is known to most of the developers, other use-cases like framing
control and TLS enforcement are less present in their mind. Notably,
a participant mentioned that usually, security headers are built-in
and deployed per default in some frameworks and are wondering
why this is not the case for CSP.

4.3.4 Cost-based Roadblocks. A reason for the lack of a CSP or for
the usage of insecure practices is, according to ten of our partici-
pants, not only the lack of knowledge about CSP or its capabilities
but, in many cases, time or monetary reasons. CSP is seen as a
rather complex security mechanism that requires massive engineer-
ing efforts, which makes it costly for a company to deploy. Also,
half of our participants admit that security is often seen as a sec-
ondary goal during the development of a Web application, which
is why non-CSP compliant technologies are used in the develop-
ment process. Thus, if during the initial deployment of a CSP, for
example, legacy code is present, the decision to use unsafe-inline
is taken instead of costly actions such as refactoring the applica-
tion. But not only the initial deployment of a sane CSP might be
costly, but also the maintenance of CSP can be quite hard, as four
participants pointed out. For every new content or feature that is
added to the application, new entries might need to be added to
the policy, requiring constant changes to the allowlist. Another
problem that makes the curation of a CSP harder is related to the
false-positive reports mentioned in Section 4.3.1. Four participants
explained that depending on the number of clients that are visit-
ing the Web application, the reporting endpoint is flooded with
both meaningful and false-positive reports, which requires massive
effort to distinguish them from another and might, in worst-case,
result in a denial-of-service for the machine running the reporting
endpoint ("They accidentally DDoSed their endpoint because they had
a policy misconfiguration which generated, like, hundreds of errors
per page."(P5)).

Key Takeaways: (1) Application-based roadblocks such as third-
party services or libraries, inline scripts, and inline events ham-
per the deployment process. (2) Also, technological limitations
like browser inconsistencies and missing framework support,
knowledge gaps introduced by misleading information sources,
or cost-effectiveness considerations are blocking factors for CSP
adaption. (3) The false-positive reports and the number of viola-
tion events sent to the reporting endpoint further complicate the
maintenance of a CSP.

4.4 Deployment Strategies
During the interviews, we observed different strategies for the ini-
tial deployment of a CSP, principles of how to deploy and maintain

a CSP, as well as strategies to solve certain problems during de-
ployment. Those problems include inline JavaScript code, inline
events, and the handling of third-party scripts. While the interview
mainly shed light on strategies for the initial deployment and the
deployment principles, the coding task showed detailed strategies
into how to solve problems regarding inline code, events, and third-
parties. Figure 4 given an overview about the strategies that the
participants mentioned during the interview or strategies they have
taken into account for the coding task.

4.4.1 Initial Deployment. Nine participants claim that they tend to
start with a rather restrictive policy to end up with a sane one. The
resulting error messages, e.g., in the browser’s developer console,
can be used to identify the fragments in the code that are blocked
by the CSP. Six of the participants that choose this way used the
restrictive policy in the enforcement mode, while three tend to
use the restrictive policy in the report-only mode. The remaining
three participants are, however, starting with a rather lax CSP
and improve this one until they arrive at a secure policy without
insecure practices such as unsafe-inline. By choosing this path, the
participants were not flooded with error messages but were able
to solve one problem after another. Four of the participants used
an automatically generated CSP as starting point for their CSP
deployment. To do so, they used tools like CSPer.io, the Mozilla
CSP Laboratory, or the report.URI wizard ("Yes because I would then
really install this Firefox add-on if that’s okay. That always gives me
the fastest baseline where I can then build on it."(P10)). Those tools,
however, pushed the participants into allowing third parties via
their domain or the full URL rather than using nonces. In addition
to that, none of the tools solved the problems regarding inline codes
and events. They either allowed the execution via the unsafe-inline
source-expression, which resulted in a trivially bypassable policy,
or they blocked it, which results in a loss of functionality.

4.4.2 Deployment Principles. Throughout the interview, the par-
ticipant shed light on different deployment principles for CSP. As
it was initially thought of by the team that is curating the CSP
standard, four developers use the report-only mode to debug the
CSP they created in the live environment, such that they do not

Initial
Deployment

Deployment
Principles

Restrictive RO-
Policy
Restrictive
Enforcement
Policy
Lax CSP
Start with
generated CSP
Use tools for
Initial
Deployment

RO to debug
live App
In-the-field
Testing
Iterative
Deployment
CSP Integral
Part of
Development
One general
CSP
Separate CSP
for Subpages
Functionality >
Security
Use Meta Tag
CSP
Used Tools
during
Deployment

Problem Soliving Strategies

Inline
Code

Inline
Events

3rd-
Parties

Externalize
Inline Code
Code
Hashing
Tools to
Help with
inline code
Use
unsafe-
inline as
Fallback
Nonce
inline
scripts

Externalize
Events
Changing
Functionality
Use script-
src-attr
Event
Hashing
Use unsafe-
inline

Self-host
3rd-Party
Code
Remove
Depen-
dencies
Nonce 3rd-
Party

Figure 4: Categories of Strategies

destroy any functionality during that experiment. Not only for
the initial deployment but also for general CSP maintenance, the
process in how people managed to get to a sane CSP involved an
iterative deployment cycle where they started with a rather lax
CSP and, over the course of time, strengthen their policy. While
the before mentioned principles are finding their use-cases in sce-
narios where the developer thought about CSP after creating the
Web application, two participants mentioned CSP as an integral
part of their development, which drastically reduced the amount
of application roadblock occurring during this process. Six of the
developers mentioned using one general CSP for the whole applica-
tion, while two others thought about using separate CSPs for every
subpage, and three evaluated both of those principles. To actually
deploy the CSP, our participants not only used HTTP headers but
two of them used HTML meta tags instead to deploy their CSP.
Features like frame-ancestors which defends against clickjacking
attacks or the definition of a report-uri to easier maintain the policy
can, for security reasons, not be used in a CSP defined inside the
HTML structure. Thus, a developer should prefer to deploy CSP
via HTTP header rather than a deployment inside the HTML. One
essential part of the deployment procedure is the usage of tools.
To ease the maintenance of CSP, two participants used a CSP Pre-
processor. To know if the created CSP is actually secure, tools for
CSP evaluation such as Google’s CSP Evaluator are used by nine of
the participants. Also, tools for the evaluation of the CSP violation
reports were used by six participants. Three participants claimed
that the functionality of the Web service is usually more important
than the security for many companies ("But it’s very easy to break
your site with CSP and the wrong CSP. You’re forgetting that you load
[...] some payment method on this page and not on every other page.
And so many people have problems when the site goes down."(P3)).

4.4.3 Problem Solving Strategies. In order to solve some of the
application issues mentioned in Section 4.3.2, the participants had
several different strategies.

Inline JavaScript: to allow JavaScript code to present in inline
script tags, seven of the participants decided to move the inline
code to an self-hosted external script. Therefore the script then
can be added to the allow-list using the ’self’ source-expression.
One participants used hashes of the code in order to allow it, and
because he used a chromium-based browser, the developer console
was used to generate the code hashes. Three participants allowed
the execution of inline scripts using nonces, while one of them
also mentioned the possibility to use unsafe-inline as a fallback for
non-CSP Level 2 compliant browsers.

Inline Event Handlers: another problem, that especially oc-
cured during the programming task, was the presence of inline
event handlers. Similar to the inline code problem, the participants
decided to programmatically add those events to the HTML ele-
ments and allow these code snippets using the aforementioned
technique. While four participants thought about using hashes to
allow the events, the required presence of the unsafe-hashes ex-
pression discouraged them from doing so. Notably, one participant
tried to use this source expression together with hashes to allow
the inline events. This participant used this inside the script-src-attr
expression, which is one of CSP’s newest features that only apply
to JavaScript defined within HTML attributes. However, because

this directive was just added to the standard, it has not been im-
plemented by all major browsers yet, which results in a loss of
functionality or security depending on the CSP. One of the par-
ticipants also came to the conclusion that using the unsafe-inline
keyword is the only way to allow events in CSP.

Third Parties: There are several different solutions to allow a
third-party resource in a CSP. Ten participants allowed the whole
domain of a third party, mainly due to bad information sources or
due to using an auto-generated CSP as starting point. Only one par-
ticipant decided to allow the full URL, so only the specific resource.
Notably, four participants thought about the possibility to self-host
the third-Party code such that it falls under the source-expression
self. While this would have been easy for the third-party resources
we have used (Bootstrap & jQuery), it might get more complicated
in case of other third parties that are again loading other assets. One
participant also thought about changing the application such that
certain third-party resources are not necessary anymore, e.g., by mi-
grating to Bootstrap 5, whichworks without jQuery. The easiest and
most secure solution, to use nonces, was used by none of our par-
ticipants. However, this lack of knowledge about the capabilities of
nonces might originate from the used information sources because
highly ranked sources such as content-security-policy.com,
advertise nonces as a way to allow inline scripts and get rid of
unsafe-inline, rather than informing people about the fact that they
can be used to allow any source [12]. Notably, the information
sources also do not mention that hashes will only work for third-
party scripts if those scripts allow access to their source code via
the Cross-Origin Resource Sharing HTTP header [11]. We are cur-
rently in the process of notifying the information sources about
their potential for improvement.

Key Takeaways: (1) Both allowing scripts via their domain and
using hashes or nonces are used to allow scripts, while usage of
the latter is focused on inline code. (2) Developers tend to use one
general CSP and tend to start with a strict policy to get more error
messages. (3) The usage of tools for generating an initial CSP,
evaluating the policy, or analyzing the violation reports seems
common for CSP deployment.

5 DISCUSSION
In this section, we investigate the relation between certain road-
blocks and strategies with axial coding. To this end, we investigated
co-occurrences of the primary codes Roadblock and Strategy. In ad-
dition to that, we give suggestions to improve CSP as a mechanism
and the deployment process of CSP. We also interpret the outcome
of the drawing task and discuss the limitations of our work.

5.1 Relations of Roadblocks and Strategies
The roadblock regarding missing framework support was often
mentioned alongside with the strategy of using nonces for inline
scripts (three times), the strategy of using hashes to allow inline
events (two times), as well as using unsafe-inline to (two times).
The participants complained about missing support for hashes or
nonces in the frameworks that they are using in their company.
This missing support was one reason why participants admit to

having included unsafe-inline in their policy instead of using nonces
or hashes for their inline scripts.

The strategy to use one general CSP for a Web application, as
well as the strategy to use separate CSPs for each page, were both
mentioned two times together with the roadblock of the CSP main-
tenance requiring toomuch effort. The participants argue that using
one general CSP for all pages results in a policy with a lot of entries,
which makes it complicated to maintain all those values. On the
other hand, participants argue that using separate CSP for sub-
pages might result in a vast amount of different CSPs, resulting in a
huge effort to maintain all those small policies. As Some et al. [44]
showed, having multiple CSPs on a single origin can still expose a
site to a successful XSS exploit if one of these policies is bypassable
or not even set on certain pages.

In two of our interviews, the participants reasoned about using
hashes to allow event handlers. However, due to the incomplete
information on how to actually allow them in both Chrome and
Firefox, those participants backed away from using hashes. In gen-
eral, online information sources often lack important information.
This not only applies to hash support but lacked important links,
e.g., from the explanation of ’unsafe-inline’ to nonces, such
that developers know how to handle inline scripts.

Key Takeaways: Using nonces to allow inline code is hard to
achieve if the used framework/plugin is not CSP compatible.

5.1.1 Improvement Suggestions. The information sources used by
our participants partly pushed them into implementation paths
that caused more work than necessary. Also, the presented infor-
mation was incomplete and did, in many cases, not recommend
the best practices in terms of CSP deployment. In particular, the
sources proposed to use unsafe-inline to resolve problems with in-
line scripts. While at least some sources mentioned that this makes
the policy trivially bypassable, none of them directly linked to the
more secure alternative of using nonces. Similarly, although they
all noted events could be added programmatically, some guides first
presented hashes as a way to solve the issue and then provided the
developer with information about the inconsistent support for that
method and the requirement to use unsafe-hashes.

In addition to that overwhelming amount of information to solve
specific issues, the examples presented as the primary example of
a CSP always included entire domains allowed in the policy. This
might cause the misconception that nonces cannot be used for third-
party resources and ignores the fact that allowing complete URLs
is the more secure way of creating a policy. Instead of presenting
the CSP Level 1 way of allowing JavaScript in the application, the
information sources should emphasize the usage of nonces in CSP.
The best practices for CSP deployment, as they are recommended
by Google with strict CSP [16], are a good and proactive approach
to arrive at a secure CSP. However, the missing support in browsers
and frameworks for the recommended features might refrain the
developers from choosing strict CSP. Based on the ideas from strict
CSP and the problems and strategies that we identified through-
out the interview and the coding task, we created a decision tree
(see Figure 5) that can be used by developers to start with CSP
deployment. Notably, this tree does not take into account edge
cases like self hosted script-gadgets [33, 41] or vulnerable JSONP

Does your setup / framework
support the use of nonces?

Yes

Use nonces for
all assets

Can you generate random
numbers in the backened and

pass them to the frontend?

No

Yes

No

Yes

No

Do you have inline
JavaScript in your App?

Are inline events
used in your App?

Programmatically
add themYes

Yes

No

Do you have self-hosted
scripts in your App?

No

Externalize and
self-host those

Allow 'self'

Yes

No

Do you have third-party
scripts in your App?

Allow those
as full URLs

sane
CSP

Figure 5: Developer decision tree to create a sane CSP.

endpoints [55]. Also, the common practice of third parties to pro-
grammatically add scripts [47] is not considered here. However,
as a developer, it is possible to check the own resources and/or
self propagate the nonces to all programmatically added scripts by
hooking JavaScript’s createElement API.

As mentioned in Section 4.4.1 tools can be used to generate a
CSP. However, in the case of inline code, they are doing an un-
satisfying job. Either they include the ’unsafe-inline’ keyword,
which makes the policy trivially bypassable, or they are just block-
ing inline code, which requires the developer to externalize it. None
of the tools emphasize the usage of nonces in the CSP, but they
instead allow URLs or even entire domains. Also, those tools take
an existing page and build a CSP around it, which is possible, but
arguably the wrong way of approaching CSP deployment. A tool
that would help the developers from scratch, like a built-in CSP
feature in common IDEs, would likely be more useful. Such a tool
would not only be capable of warning users as soon as they use
inline scripts or events, but it can also help with the computation
of hashes or the propagation of nonces for the JavaScript assets. In
addition to that, known and widely used frameworks should assist
the developers in creating and propagating nonces to all scripts
present in the application and should also enforce this behavior
for plugins that are available for their platform. Also, many tools
that are used to check the security of a deployed CSP or header
configurations in general, as mentioned in Section 4.4.2, can be built
into IDE extensions. However, it would also be handy for develop-
ers if warnings about a misconfigured CSP, or security headers in
general, would be printed in the developer console because every
participant of our study used this browser tool. If the developer
would get the help and the information they need by default, e.g.,
via the browser, it would ease the deployment and maintenance of
CSP. By lowering the engineering effort required to deploy a CSP,

problems like the monetary factor might have a lower impact on
the security of real-world policies. Some browsers already try to
give rudimentary help for CSP deployment, like printing the script
hashes in the console error messages. By standardizing those warn-
ings and the error reporting in general, all developers, independent
of the browser, can benefit from those messages, as long as everyone
is adhering to the standard. This standard compliance, however,
seems to be a problem in general. Browser inconsistencies like
the different support for a feature such as ’unsafe-hashes’ and
’strict-dynamic’, or the inconsistent way of handling nonces or
WebSocket connections, cause additional confusion for developers
in deciding if and how to use these features.

5.2 Drawing Task
As mentioned in Section 3.2, we ask the participants to draw and
explain their favorite XSS vulnerability, so as to better understand
the participants’ mindset about XSS and CSP. All participants freely
chose to draw XSS as a server-side issue. Although one partici-
pant at least mentioned ”DOM-based XSS”, this indicates that the
client side of the problem is less prominent in developers’ minds.
Eight participants decided to draw a stored server-side XSS vulner-
ability, one drew a reflected server-side XSS, and two participants
explained both variants, which indicates that the stored variant is
more prevalent in the developer’s mind. The prominence of the
server-side might be one reason why two of our participants reveal
certain misunderstandings throughout the drawing task. XSS seems
to be a server-side issue in their mindset, so the server is loading
the malicious payload. Similarly, they thought that the server also
enforces the CSP. This focus on the server-side was also reported
by one of our participants, who is working as a consultant: "The
browser decides that in case of CSP and then forbids it [...] but
when I then come to cross-origin resource sharing, that this is then
the server, [...] and teaching that to my customers is always diffi-
cult, too." (P9). Another misunderstanding of CSPs capabilities is
that three of our participants only explained that if CSP would be
present on the attacked page, it would prohibit the data exfiltration
to an attacker controller server, but not mentioned that the actual
code execution is also forbidden. The full results of our drawing
task analysis are available in Appendix H. Notably, one participant
did not draw an XSS attack, but rather a CSRF attack.

Key Takeaways: The server-side variants of XSS are far more
prominent in the developer’s mindset. Two even had the miscon-
ceptions that XSS is a server-side problem and concluded that
CSP is, therefore, enforced on the server.

5.3 Reflections on Methodology
Due to the extensive pre-study, we eliminated any application bugs
that could have resulted in problems during the programming task.
In general, the coding task achieved the intended goal. Participants
revealed strategies, information sources, and roadblocks only dur-
ing the coding task, either because it resulted in additional concepts
or shed light on problems that the participant forgot about during
the interview but then remembered during the coding task. The
way how the coding task was performed revealed different pros
and cons. While the remote control process drastically reduced the

time required for the setup, it seemed to be more exhausting for
the participants. This is because they needed to control a foreign
system, not set up to their liking. Moreover, depending on the net-
work connection, remote control incurred lags. On the other hand,
natively running our application requires significant effort to set
up, but it also resulted in the participants being able to work as
they wish. Conducting the coding task using the provided docker
files has shown to be a good tradeoff between the aforementioned
options. The setup was not complicated because the docker image
only required a few minutes (usually less than three) to build. Be-
cause the files were on the participant’s machines, it was possible
to use their coding setup for code changes. However, one drawback
of this approach was that changes to the code required a docker
rebuild, causing a slight delay of few seconds (less than 20). While
in theory, we could have also mounted the directory directly into
the docker to allow live updates. However, this would require ad-
ditional packages to allow for auto-reload and incurs the risk of
inconsistencies between the developer’s view and the docker-run
system. Moreover, some participants changed theWeb server config
through nginx, which would have required a reload in either case.

Similar to the results of the coding task, the drawing task helped
us to enrich our data and get a deeper understanding of the partic-
ipant’s mindset about XSS and CSP. Some of the misconceptions
regarding CSP and the underlying threat model would not have
been uncovered without the drawing task, which is why we rec-
ommend this addition to a study like ours. Ten participants used
Zoom’s annotate feature to draw, which in some cases were not
present in the recordings. Fortunately, we made screenshots of the
drawings during the interview, and therefore we did not lose any
data due to that problem. Using diagrams.net for the drawing task
required one or two minutes of setup, but seems to be easier for
the participants and was present in both recordings.

Only a small fraction of Web sites actually deploy a CSP. Thus,
recruitingWeb developers of real-world applications that have dealt
with CSP before is even more challenging than recruiting devel-
opers in general. Not only is our targeted group limited and hard
to reach, in addition to that, they are also educated in both Web
development and IT-Security. This high level of education was the
reason why we decided to compensate the participation with a 50€
voucher for their time. In total 30 possible participants completed
the screening survey. The first recruitment attempt, to send bulk
emails to the top sites that deployed CSP, resulted in zero responses.
Thus, we continued with the attempt to use the OWASP as a trusted
third party to advertise our study. After this campaign 13 potential
participants completed our survey. We invited all of those partici-
pants to the online interview, but we only received answers from
six of them even after two additional reminders. The next idea
to increase the number of potential participants was to cold-call
Web development companies from our country. This attempt again
resulted in zero responses. Thus, we decided to try out recruitment
via LinkedIn advertisement, which was seemingly successful with
eleven new entries in our database. However, we had indications
that ten of those were only bots that entered data in the survey as
a result of the LinkedIn advertisement. Those bots not only entered
bogus values in the fields of the survey but also supplied emails of
randomly concatenated words and numbers. Nevertheless, we send

an invitation email to three of those because they entered occupa-
tions similar toWeb developer but got no response to that email. We
also invited one non-bogus entry, but this potential participant did
not reach back to us even after the reminders. Right before the ad-
vertisement campaign, two colleagues from our research institution
gave a talk at an OWASP event. At the end of their talk, they also
advertised our study, which resulted in five new database entries,
from which four actually took part in the interview. Notably, the
OWASP event resulted in one additional participant, who did not
take part in the survey but participated in the interview. In addition
to that, one participant that completed both survey and interview
was recruited via word-of-mouth propaganda. Notably, we did not
ask the participants from where they found out about our study.
Thus the numbers above are the results of temporal coherence be-
tween the recruitment procedure and the participant completing
the survey. In total 20 (30-10 bots) people finished the survey, and
12 people participated in our interview, including the drawing and
coding task. While we tried several ways to recruit those, we must
admit that using a trusted third party, in our case the OWASP, for
recruitment surpassed all other recruitment procedures.

5.4 Limitations
We acknowledge three main limitations to our work that are either
tied to the recruitment process or the methods we used to gather
our data. First, our sample might be biased towards security-aware
developers, given our main recruiting path through the OWASP.
We invested a lot of time in various recruitment efforts, including
contacting web development companies, sending emails to web-
sites with CSP, and advertising on LinkedIn. However, it proved to
be very difficult to recruit specialized developers. Yet, as depicted
in Section 4.1 only half of our participants reported having a se-
curity background. Second, we acknowledge the limitations that
interviews entail. Although we made every effort to build rapport
and ensure that participants freely and willingly recounted their
experiences, we cannot guarantee that no concepts were missing
or misstated. This portion of the data is based on the recollection
of the participants, and it is possible that portions may have been
forgotten, intentionally omitted, or misremembered. For this rea-
son, we decided to supplement the interview with the coding task.
Nevertheless, we do not claim the completeness of the interview
results. Third, the coding task was likely biased due to its artifi-
cial setting. To mitigate this, we tried to make the coding task as
pleasant as possible for the participants by offering three popular
programming languages and various setup options. To avoid that
participants feel pressured, we clarified that we will not rate any of
their solutions regarding their correctness but are only interested
in the process of how they approached the problem and developed
the CSP.

6 CONCLUSION
In this paper, we present the first qualitative study involving 12
real-world Web developers to evaluate the usability of the CSP.
Throughout our interview that involved a drawing and coding task,
we investigate the participant’s mindset regarding XSS and un-
cover the reason behind the usage of some insecure CSP practices
and strategies and motivations that interact with the deployment

procedure of a CSP. The motivation to deploy CSP is, in the best
case, the incentive to mitigate XSS; in the worst case, it is only a
checkbox that arose from a penetration test. We shed light on dif-
ferent kinds of roadblocks for CSP deployment. For the roadblocks
based on knowledge gaps and conceptual issues, we argue that
better information sources can mitigate this problem. However, the
technical roadblocks require that the browser vendors finally need
to agree upon how CSP should be implemented, how error mes-
sages should look like, and introduce warnings and information for
poorly configured CSP in the developer console. Those steps would
reduce the uncertainty of many developers and reduce the impact
of lousy information sources on the deployment procedure to ease
the deployment procedure. Our participants tend to use the old way
of allowing scripts via their hostname, but some also use hashes
or nonces to allow scripts, while usage of the latter is focused on
inline code. Also, tools for generating an initial CSP, evaluating the
policy, or analyzing the violation reports seem common for CSP
deployment. In addition to that, we also discuss our methodological
choices and share the lessons we learned from those, such as the
success or failure of certain recruitment techniques.

REFERENCES
[1] Vishal Arghode. Qualitative and quantitative research: Paradigmatic differences.

Global Education Journal, 2012(4), 2012.
[2] A. Barth. RFC 6454: The Web Origin Concept. Online at https://www.ietf.org/ rfc/

rfc6454.txt, 2011.
[3] A Blandford, D Furniss, and S Makri. Introduction: Behind the scenes. 2016.
[4] Chromium Blog. Protecting users from insecure downloads in google chrome.

https://blog.chromium.org/2020/02/protecting-users-from-insecure.html, .
[5] Mozilla Security Blog. Firefox 83 introduces https-only mode. https://blog.mozilla.

org/security/2020/11/17/firefox-83-introduces-https-only-mode/, .
[6] Virginia Braun and Victoria Clarke. Using thematic analysis in psychology.

Qualitative research in psychology, 3(2):77–101, 2006.
[7] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Content security prob-

lems?: Evaluating the effectiveness of content security policy in the wild. In CCS,
2016.

[8] Stefano Calzavara, Sebastian Roth, Alvise Rabitti, Michael Backes, and Ben Stock.
A tale of two headers: a formal analysis of inconsistent click-jacking protection
on the web. In 29th {USENIX} Security Symposium ({USENIX} Security 20), pages
683–697, 2020.

[9] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben Stock.
Reining in the web’s inconsistencies with site policy. In NDSS, 2021.

[10] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. Cod-
ing in-depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement. Sociological Methods & Research, 42(3):294–320, 2013.

[11] content-security policy.com. Csp: Hashing. https://content-security-policy.com/
hash/, .

[12] content-security policy.com. Csp: Nonces. https://content-security-policy.com/
nonce/, .

[13] diagrams.net. Diagrams. https://www.diagrams.net/.
[14] Adam Doupé, Weidong Cui, Mariusz H Jakubowski, Marcus Peinado, Christopher

Kruegel, and Giovanni Vigna. dedacota: toward preventing server-side xss via
automatic code and data separation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 1205–1216, 2013.

[15] TeamViewer Germany GmbH. Teamviewer. https://www.teamviewer.com/.
[16] Google. Withgoogle: Content security policy. https://csp.withgoogle.com/docs/

strict-csp.html.
[17] Peter Leo Gorski, Luigi Lo Iacono, Stephan Wiefling, and Sebastian Möller. Warn

if secure or how to deal with security by default in software development?. In
HAISA, pages 170–190, 2018.

[18] Daniel Hausknecht, Jonas Magazinius, and Andrei Sabelfeld. May i?-content
security policy endorsement for browser extensions. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 261–
281. Springer, 2015.

[19] Ben Hayak. Same Origin Method Execution (SOME). Online at http://www.
benhayak.com/2015/06/ same-origin-method-execution-some.html, 2015.

[20] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. Scriptless attacks: stealing the pie without touching the sill. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security.

ACM, 2012.
[21] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z

Yang. mxss attacks: Attacking well-secured web-applications by using innerhtml
mutations. In ACM SIGSAC conference on Computer & communications security.
ACM, 2013.

[22] Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan Čapkun.
Home is safer than the cloud! privacy concerns for consumer cloud storage. In
Proceedings of the Seventh Symposium on Usable Privacy and Security, pages 1–20,
2011.

[23] Internet Security Research Group (ISRG). Let’s encrypt. https://letsencrypt.org/.
[24] Markus Jakobsson, Zulfikar Ramzan, and Sid Stamm. Javascript breaks free. http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf .
[25] Burke Johnson and Larry Christensen. Educational research: Quantitative, quali-

tative, and mixed approaches. Sage, 2008.
[26] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. “my data

just goes everywhere:” user mental models of the internet and implications for
privacy and security. In Eleventh Symposium On Usable Privacy and Security
({SOUPS} 2015), pages 39–52, 2015.

[27] Amit Klein. Dom based cross site scripting or xss of the third kind. http:
//www.webappsec.org/projects/articles/071105.shtml, 2005.

[28] Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage,
London, 2004.

[29] Katharina Krombholz, Karoline Busse, Katharina Pfeffer, Matthew Smith, and
Emanuel von Zezschwitz. "If HTTPS Were Secure, I Wouldn’t Need 2FA"-End
User and Administrator Mental Models of HTTPS. IEEE Security & Privacy, 2019.

[30] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental models:
a study of developerwork habits. In Proceedings of the 28th international conference
on Software engineering, pages 492–501, 2006.

[31] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods in
human-computer interaction. Morgan Kaufmann, 2017.

[32] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: Large-scale
detection of dom-based xss. In CCS, 2013.

[33] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A Vela Nava, and
Martin Johns. Code-reuse attacks for the web: Breaking cross-site scripting
mitigations via script gadgets. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2017.

[34] Calendly LLC. Calendly. https://calendly.com/.
[35] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, and Matthew Smith.

Deception task design in developer password studies: Exploring a student sample.
In Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018), pages
297–313, 2018.

[36] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew Smith. On
conducting security developer studies with cs students: Examining a password-
storage study with cs students, freelancers, and company developers. In Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems, pages
1–13, 2020.

[37] Mozilla Development Network. Csp: frame-ancestors. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-
ancestors.

[38] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
Cspautogen: Black-box enforcement of content security policy upon real-world
websites. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 653–665, 2016.

[39] Phil Ringnalda. Getting around IE’s MIME type mangling. http://weblog.
philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling.

[40] David Ross. Happy 10th birthday cross-site scripting. Online at https://blogs.msdn.
microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/ , 2009.

[41] Sebastian Roth, Michael Backes, and Ben Stock. Assessing the impact of script
gadgets on csp at scale. 2020.

[42] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. Complex security policy? a longitudinal analysis of deployed content
security policies. In NDSS, 2020.

[43] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. Flax: Sys-
tematic discovery of client-side validation vulnerabilities in rich web applications.
In NDSS, 2010.

[44] Dolière Francis Some, Nataliia Bielova, and Tamara Rezk. On the content secu-
rity policy violations due to the same-origin policy. In Proceedings of the 26th
International Conference on World Wide Web, pages 877–886, 2017.

[45] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with
content security policy. In International Conference on World Wide Web (WWW),
2010.

[46] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site scripting
in the wild. 2019.

[47] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. Who’s hosting
the block party? studying third-party blockage of csp and sri. In Network and
Distributed Systems Security (NDSS) Symposium 2021, 2021.

https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc6454.txt
https://blog.chromium.org/2020/02/protecting-users-from-insecure.html
https://blog.mozilla.org/security/2020/11/17/firefox-83-introduces-https-only-mode/
https://blog.mozilla.org/security/2020/11/17/firefox-83-introduces-https-only-mode/
https://content-security-policy.com/hash/
https://content-security-policy.com/hash/
https://content-security-policy.com/nonce/
https://content-security-policy.com/nonce/
https://www.diagrams.net/
https://www.teamviewer.com/
https://csp.withgoogle.com/docs/strict-csp.html
https://csp.withgoogle.com/docs/strict-csp.html
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
https://letsencrypt.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://calendly.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/

[48] Anselm Strauss and Juliet M Corbin. Grounded theory in practice. Sage, London,
1997.

[49] Michael Sutton. The dangers of persistent web browser storage, 2009.
[50] European Union. EU Commission Recommendation (2003/361/EC). Online

at https:// eur-lex.europa.eu/ legal-content/EN/TXT/PDF/?uri=CELEX:32003H0361,
2003.

[51] W3C. CSP 1.0. Online at https://www.w3.org/TR/CSP1/ , 2015.
[52] W3C. CSP Level 2. Online at https://www.w3.org/TR/CSP2/ , 2016.
[53] W3C. CSP Level 3. Online at https://www.w3.org/TR/CSP3/ , 2016.
[54] GitHub W3C webappsec csp. Issue 7: Csp: connect-src ’self’ and websockets.

https://github.com/w3c/webappsec-csp/issues/7.
[55] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. CSP

is dead, long live CSP! On the insecurity of whitelists and the future of content
security policy. In CCS, 2016.

[56] Michael Weissbacher, Tobias Lauinger, and William Robertson. Why is CSP
failing? Trends and challenges in CSP adoption. In RAID, 2014.

A SCREENING QUESTIONNAIRE:
The screening questionnaire will be conducted using a Django
based survey instance hosted by our institution.

A.1 Landing Page:

Figure 6: The landing page of our screening questionnaire.

A.2 Specific Questions:
• For which Web application did you take part in the deploy-
ment or maintainance of CSP? Please provide a URL, if pos-
sible.

• To what extent were you involved in the maintainance or
deployment of CSP for the Web applications you mentioned
above?

• When confronted with security-critical decisions, do you
make them mostly alone or mostly in a team? Note: Likert
Scale 1–7, 1=strongly agree, 7=strongly disagree

• Security is my main focus when writing Web Apps. Note:
Likert Scale 1–7, 1=strongly agree, 7=strongly disagree

• Security plays an important role in my everyday work. Note:
Likert Scale 1–7, 1=strongly agree, 7=strongly disagree

• Howmany people are working in your team? And howmany
of those are specifically dealing with security?

A.3 Attacker Model:
• Which of the following technologies and services below have
you used in the past year? (Check all that apply.)
□ Social Networks (Facebook, Twitter, etc.)
□ Online Audio and Video Conferencing (Skype, FaceTime,

Google Hangout, etc.)
□ Office Software (Google Docs, Office Online, etc.)
□ Mobile Messaging (Signal, Whatsapp, etc.)
□ Online Banking / Payment (PayPal, etc.)
□ Online Shopping (Amazon, Zalando, etc.)

• Are you aware of Web attacks when using those services? If
yes, name some attacks you consider ...

A.4 Demographics:
• Age / Gender / Home Country / Highest (completed) Ed-
ucation Level / Current Occupation / Recent Professional
Status

• How big is the company that you are working for? Note:
Buckets according to the EU Commission Recommendation
(2003/361/EC) [50]

• Is the Web presence your company’s main business?
• Email address Note: Mandatory for contact reasons.

B INTERVIEW PROTOCOL:
The interview will be an online video conference where we capture
screen and audio of us and the participants.

B.0.1 General:

• In your company, what is the specific area that you cover
with your work? What is your specific task in this team?

• Are you considering yourself a Web developer? If yes, since:
...

• Do you have an IT-Security background? If yes, please spec-
ify: ...

• Was Web Security and CSP part of your education? If yes,
where did you learn about it? If possible, briefly outline the
basic content and topics where covered.

B.1 Threat Model covered by CSP:
• What was your (or your company’s) motivation to deploy
CSP?
– What are the Use-Cases of CSP? (XSS-Mitigation, Framing
Control, TLS Enforcement)

– What are the Attacker capabilities?
∗ Why is XSS/Framing/Network attack bad / What bad
things might happen?

∗ How does CSP defend your Web application against
those attacks?

• Do you use other HTTP headers to prevent those attack
scenarios? (XFO / HSTS / ...)

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003H0361
https://www.w3.org/TR/CSP1/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/
https://github.com/w3c/webappsec-csp/issues/7

• Drawing Task for XSS attack (on a drawing sheet with pre-
filled icons of the stakeholders.)

B.2 Roadblocks for CSP:
Persolanized to individual Developer Group:

(1) How did you manage to create a sane CSP?
• What challenges did you encounter and how did you re-
solve them?

(2) In your CSP, you used $InsecurePractice, what caused the
deployment of this source-expression?
• Do you see any problems regarding this choice?
• How could you resolve this issue / fix your CSP?
• Would it be feasible to do this for your Web application?

(3) Between $startCSP and $endCSP you experimented with
CSP for your Web application. What challenges did you
encounter?
• Why did you abort your experiment of deploying a CSP?
– Technical issues or bad cost-effectiveness considera-
tion?

– If technical, what exactly, and do you know how to
resolve this issue?

• What changes would be required that you consider retry-
ing CSP deployment?

Ask all Groups: Have you used any tools / consulting that helped
you to create the Policy? If yes, which ones: ...
Validation: Think aloud while deploying a CSP that defends against
XSS for the following Web application.

C OWASP POSTER:
D LINKEDIN ADVERTISEMENT:
E RECRUITING MAIL:

S u b j e c t : S tudy I n v i t a t i o n to Improve CSP
−−−
Dear $DOMAIN . TLD team ,
We are s e c u r i t y r e s e a r c h e r s from
$RESEARCH_ORANIZATION . In our r e s e a r ch , we
have been ana l y z i n g s e v e r a l web a p p l i c a t i o n s
to e v a l u a t e the e f f e c t i v e n e s s o f t h e i r

dep loyed s e c u r i t y mechanisms . Cur ren t ly , we
a r e i n v e s t i g a t i n g the Content S e c u r i t y
Po l i c y , and we no t i c e d t h a t . . .

Opt ion 1 . your Web s i t e i s one o f the very
few e x c e p t i o n a l c a s e s t h a t a c t u a l l y dep loyed
a sane CSP . In o rde r to under s t and how you

managed to a r r i v e t h e r e and to he lp o the r
Web s i t e s to emula te your suc ce s s , we would
l i k e to i n v i t e you to p a r t i c i p a t e in our
s tudy .

Figure 7: Poster that was used by the OWASP to advertose
our study.

Option 2 . l i k e a p l e t h o r a o f o th e r Web s i t e s
your CSP i n c l u d e s i n s e c u r e e n t r i e s . With

us ing $INSECURE_PRACTICE an a t t a c k e r can
e a s i l y bypass the XSS m i t i g a t i o n o f f e r e d by
CSP . We would l i k e to i n v i t e you to
p a r t i c i p a t e in our s tudy in o rde r to he lp us
b e t t e r under s t and the i s s u e s and c h a l l e n g e s
with r ega rd to CSP .

Figure 8: Advertisement that was used in our LinkedIn cam-
pain.

The s tudy w i l l be c o n s i s t o f two p a r t s :
F i r s t , a s h o r t (< 5 min) s c r e en i n g
qu e s t i o nn a i r e , and a f t e rward , we might
i n v i t e you to an on l i n e v ideo in t e r v i ew ,
which w i l l l a s t f o r app rox ima t e l y one hour .
Of course , we w i l l g i v e you an a p p r o p r i a t e
compensat ion o f 50 $MONETARY_UNIT (as Amazon
g i f t c a rd) a f t e r f i n i s h i n g the i n t e r v i ew .

I f you or one o f your c o l l e a g u e s who i s
f am i l i a r with CSP wants to p a r t i c i p a t e ,
p l e a s e f i l l out our s ho r t s c r e en i n g
q u e s t i o n n a i r e a t $LINK . Note t h a t you shou ld
have d e a l t with CSP a t l e a s t once . I f not ,

p l e a s e forward t h i s ema i l t o your c o l l e a g u e s
t h a t a r e r e s p o n s i b l e f o r CSP in your

company .

Should you need f u r t h e r i n f o rma t i on or have
any o the r que s t i on s , p l e a s e do not h e s i t a t e
to c on t a c t us by answer ing t h i s ema i l .

B e s t Regards ,
$NAME
−−−
Foo t e r with f u l l name , e x a c t addre s s , phone
number , and ema i l a dd r e s s .

F INVITATION MAIL:

S u b j e c t : I n v i t a t i o n to CSP I n t e r v i ew
−−−
Hi ,

thanks aga in f o r p a r t i c i p a t i n g in our s tudy
and he l p i ng us to improve CSP . Your i n s i g h t s
and f i r s t −hand exp e r i e n c e with CSP w i l l

he lp us to i d e n t i f y r o adb l o c k s to a s e cu r e
CSP deployment .

We would l i k e to i n v i t e you to our 90−minute
s tudy . I t c o n s i s t s o f (1) a ~ 30 min

i n t e r v i ew about your e x p e r i e n c e s with CSP
and (2) a ~ 30 min programming t a s k (+ 30
min b u f f e r e . g . , f o r s e tup) where you modify
a sma l l Web app in a programming language

o f your cho i c e (PHP , Python , or J S) .

P l e a s e en t e r your a v a i l a b i l i t i e s here to
f i n d a s u i t a b l e da t e f o r your p a r t i c i p a t i o n
in the s tudy : $CALENDLY_NAME

The i n t e r v i ew t a k e s p l a c e on l i n e and can be
conduc ted with any so f twa r e t h a t s uppo r t s
aud io and s c r e en r e c o r d i n g (e . g . zoom) .
We want to make the programming t a s k as
c om fo r t a b l e as p o s s i b l e f o r you . The r e f o r e
you have the cho i c e between t h r e e
programming l anguage s (PHP , Python , or J S)
and can f r e e l y choose between the f o l l ow i n g
se tup op t i o n s :

1 . Docker :
We ' l l p r ov i d e you with the code as we l l a s
D o c k e r f i l e s to b u i l d and run the WebApp in a
docker c o n t a i n e r .

Requ i rements : docker docker −compose

2 . V i r t u a l Machine :
We ' l l p r ov i d e you with a V i r t u a lBox VM (. ova
) t h a t c o n t a i n s the code and can b u i l d and
run the WebApp .

Gender: male 10
female 1

Age: 20-30 6
30-40 3
40-50 2

Company Size: < 9 2
10-49 2
50-249 1
> 250 6

Is the Web Presence Yes 7
Main Business: No 3

No Answer 1

Table 1: Demographics of the 11 participants that completed
the survey. (One participant only took part in the interview.)

Requ i rements : V i r t u a lBox (and VM Image
$OVA_LINK)

3 . TeamViewer :
We ' l l p r ov i d e you remote a c c e s s to a VM th a t
c on t a i n s the code and can b u i l d and run the
WebApp .
Requ i rements : l a t e s t TeamViewer C l i e n t

4 . D i r e c t Code Execu t i on :
We ' l l p r ov i d e you with the sou r c e code and a
s h e l l s c r i p t t h a t i n s t a l l s a l l d ependenc i e s
on your d ev i c e .

Requ i rements : L inux or Windows with
i n s t a l l e d Windows−Subsystem f o r Linux

I t would be awesome i f you can s e t up the
dependenc i e s f o r your p r e f e r r e d ve r s i on , e . g
. , i n s t a l l V i r t u a lBox and check i f i t i s
working . At the beg inn ing o f the in t e r v i ew ,
we ' l l ask you which o f the op t i o n s you
p r e f e r and p rov i d e you with the sou r c e code
o f the WebApp .

Should you need f u r t h e r i n f o rma t i on ,
a s s i s t a n c e , or have any o the r que s t i on s ,
p l e a s e do not h e s i t a t e to c on t a c t us by
answer ing t h i s ema i l .

B e s t Regards ,
$NAME
−−−
Foo t e r with f u l l name , e x a c t addre s s , phone
number , and ema i l a dd r e s s .

G DEMOGRAPHICS OF PARTICIPANTS
H DATA FROM THE DRAWING TASK

XSS Type? Stored Server-Side 8
Reflected Server-Side 1
Both Server-Side 2

Inline or external pay-
load?

Inline 8

External 3

Who executes payload? Browser 9
Server 2

What can happen? Leak from Browser to
evil.com

8

Leak from Server to
evil.com

1

Impersonate victim 1
Cryptomining 1

Who enforces CSP? Browser 8
Server 2
Not mentioned 1

What is mitigated? Script execution 4
Script loading 3
Only exfiltration 3
Not mentioned 1

Table 2: Drawing task results with concepts and number of
paritipants. (One participant did not drew an XSS attack.)

I FINAL CODEBOOK:
Demography

Mot i v a t i on : P e n t e s t / Consu l t i ng
Mo t i v a t i on : Ro le Model
Mo t i v a t i on : Repu t a t i on
Mo t i v a t i on : Add i t i o n a l S e c u r i t y Layer
Mo t i v a t i on : XSS M i t i g a t i o n
Mo t i v a t i on : Framing Con t ro l
Mo t i v a t i on : S e c u r i t y T r a i n i ng
Mo t i v a t i on : Bu i l d P i p e l i n e Warning
Mo t i v a t i on : F i n a n c i a l Im p l i c a t i o n s

D i s i n c e n t i v e : S e c u r i t y Secondary Goal
D i s i n c e n t i v e : Bu i l d in S e c u r i t y F e a t u r e s −>
Frameworks , APIs , L i b r a r i e s
D i s i n c e n t i v e : F i n a n c i a l Consequences

B e n e f i t : Re− e v a l u a t e Re sou r ce s
B e n e f i t : Re− e v a l u a t e App l i c a t i o n S t r u c t u r e

Percep t ion_CSP : Add i t i o n a l S e c u r i t y Layer
Percep t ion_CSP : Secondary S e c u r i t y F a c t o r
Percep t ion_CSP : XSS M i t i g a t i o n
Percep t ion_CSP : Resource Con t ro l
Percep t ion_CSP : Framing Con t ro l
Percep t ion_CSP : TLS Enforcement
Percep t ion_CSP : Data Connect ion Con t ro l −> connect
− s r c , form − a c t i o n
Percep t ion_CSP : CSRF Defense

Knowledge_Gap : TLS Enforcement
Knowledge_Gap : XSS
Knowledge_Gap : Framing Con t ro l

Knowledge_Gap : CSP Enforcement
Knowledge_Gap : CSP Concept

A t t a ck_Vec to r : C l i ck − J a c k i n g −> dep loyed XFO
At t a ck_Vec to r : S e s s i o n H i j a c k i ng
At t a ck_Vec to r : XSS
At t a ck_Vec to r : MitM −> dep loyed HSTS
At t a ck_Vec to r : Data E x f i l t r a t i o n −> Magecar t

Drawing_Task : S t o r ed Server − s i d e XSS
Drawing_Task : S t o r ed C l i en t − s i d e XSS
Drawing_Task : R e f l e c t e d Server − s i d e XSS
Drawing_Task : R e f l e c t e d C l i en t − s i d e XSS

S t r a t e g y : In − the − f i e l d Te s t i n g
S t r a t e g y : R e s t r i c t i v e RO− Po l i c y
S t r a t e g y : R e s t r i c t i v e Enforcement P o l i c y
S t r a t e g y : I t e r a t i v e Deployment
S t r a t e g y : S t a r t with gene r a t ed CSP
S t r a t e g y : E x t e r n a l i z e I n l i n e Code
S t r a t e g y : E x t e r n a l i z e Event s −> Have Event s added
p rog r amma t i c a l l y
S t r a t e g y : Code Hashing
S t r a t e g y : Event Hashing
S t r a t e g y : Nonces f o r i n l i n e S c r i p t s
S t r a t e g y : Nonces f o r e x t e r n a l S c r i p t s
S t r a t e g y : Lax CSP
S t r a t e g y : CSP I n t e g r a l P a r t o f Development
S t r a t e g y : S e l f −hos t 3 rd −Pa r ty Code
S t r a t e g y : One g en e r a l CSP
S t r a t e g y : S e p a r a t e CSP f o r Subpages
S t r a t e g y : Remove Dependenc ies
S t r a t e g y : Use s c r i p t − s r c − a t t r
S t r a t e g y : Use unsa fe − i n l i n e as F a l l b a c k
S t r a t e g y : Changing F u n c t i o n a l i t y
S t r a t e g y : F u n c t i o n a l i t y > S e c u r i t y
S t r a t e g y : Use Meta Tag CSP
S t r a t e g y : Use unsa fe − i n l i n e

Tool : CSP Ev a l u a t i o n −> Google CSP Eva lua to r ,
s e c u r i t y −heade r s . i o
Tool : I n i t i a l Deployment −> CSPer . io , Mo z i l l a CSP
Labora to ry , r e p o r t . u r i wizard
Tool : Repor t E v a l u a t i o n −> s en t r y . io , r epo r t − u r i .
com , DIY
Tool : Deve loper Too l s o f Browser
Tool : CSP P r e p r o c e s s o r
Tool : Code Hashing

Roadb lock : I n l i n e S c r i p t s
Roadb lock : I n l i n e Event s
Roadb lock : 3 rd −Pa r ty L i b r a r i e s −> Angular
Roadb lock : Websocket
Roadb lock : 3 rd −Pa r ty S e r v i c e s −> Google / Youtube
Roadb lock : Legacy Code
Roadb lock : D i f f e r e n t Development Teams −>
R e s t r i c t e d Code Access

Roadb lock : Browser Conso le I n c o n s i s t e n c y
Roadb lock : Browser I n c o n s i s t e n c y
Roadb lock : Browser Ex t en s i on
Roadb lock : F a l s e P o s i t i v e Repo r t s −> hacked
browser , e x t en s i on s , browser f e a t u r e s
Roadb lock : Amount o f Repo r t s
Roadb lock : CSP Maintenance −> new conten t , long
header
Roadb lock : Eng inee r i ng E f f o r t
Roadb lock : Complex i ty o f CSP
Roadb lock : Framework Suppor t −> DIY
Roadb lock : I n s u f f i c i e n t E r r o r Repo r t s
Roadb lock : I n f o rma t i on Source

Language : J a v a S c r i p t
Language : PHP

B i a s : Framework F am i l i a r i t y
B i a s : I n t e r v i ew P r e p a r a t i o n
B i a s : Nervousness

I n f o rma t i on_Sou r c e : Mo z i l l a Development Network
In f o rma t i on_Sou r c e : B logs −> S c o t t Helme
In f o rma t i on_Sou r c e : S t a ck Overf low
In f o rma t i on_Sou r c e : W3C S p e c i f i c a t i o n
In f o rma t i on_Sou r c e : con ten t − s e c u r i t y − p o l i c y . com
In f o rma t i on_Sou r c e : Con fe rence s −> OWASPday

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Cross-Site Scripting
	2.2 Content Security Policy
	2.3 Qualitative Methods

	3 Methodology
	3.1 Screening Survey
	3.2 Interview
	3.3 Coding Task
	3.4 Pre-Study
	3.5 Recruitment and Participants
	3.6 Data Analysis
	3.7 Ethical Considerations

	4 Results
	4.1 Participant Demographics
	4.2 Motivation for CSP
	4.3 Roadblocks of CSP
	4.4 Deployment Strategies

	5 Discussion
	5.1 Relations of Roadblocks and Strategies
	5.2 Drawing Task
	5.3 Reflections on Methodology
	5.4 Limitations

	6 Conclusion
	References
	A Screening Questionnaire:
	A.1 Landing Page:
	A.2 Specific Questions:
	A.3 Attacker Model:
	A.4 Demographics:

	B Interview Protocol:
	B.1 Threat Model covered by CSP:
	B.2 Roadblocks for CSP:

	C OWASP Poster:
	D LinkedIn Advertisement:
	E Recruiting Mail:
	F Invitation Mail:
	G Demographics of Participants
	H Data from the Drawing Task
	I Final Codebook:

