
Helping or Hindering?
How Browser Extensions Undermine Security

Shubham Agarwal
CISPA Helmholtz Center for Information Security

Saarbrücken, Saarland, Germany
shubham.agarwal@cispa.de

ABSTRACT
Browser extensions enhance the functionality of native Web appli-
cations on the client side. They provide a rich end-user experience
by utilizing feature-rich JavaScript APIs, otherwise inaccessible for
native applications. However, prior studies suggest that extensions
may degrade the client-side security to execute their operations,
such as by altering the DOM, executing untrusted scripts in the
applications’ context, and performing other security-critical opera-
tions for the user.

In this study, we instead focus on extensions that tamper with
the security headers between the client-server exchange, thereby
undermining the security guarantees that these headers provide
to the application. To this end, we present our automated analysis
framework to detect such extensions by leveraging static and dy-
namic analysis techniques. We statically identify extensions with
the permission to modify headers and then instrument the dan-
gerous APIs to investigate their runtime behavior with respect to
modifying headers in-flight.

We then use our framework to analyze the three snapshots of
the Chrome extension store from Jun 2020, Feb 2021, and Jan 2022.
In doing so, we detect 1,129 distinct extensions that interfere with
security-related request/response headers and discuss the associ-
ated security implications. The impact of our findings is aggravated
by the extensions, with millions of installations dropping critical
security headers like Content-Security-Policy or X-Frame-Options.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Client-side Security, HTTP Security Headers, Browser Extensions

ACM Reference Format:
Shubham Agarwal. 2022. Helping or Hindering? How Browser Extensions
Undermine Security. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22), November 7–11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3548606.3560685

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560685

1 INTRODUCTION
Browser extensions are an integral part of the modern-day Web
that provides additional client-side features to their users, such
as improving the appearance of Web sites and integrating with
third-party services. They are more potent than native Web appli-
cations, owing to the feature-rich JavaScript APIs that allow them
to intercept and control client-server exchanges, read and modify
DOM content, and much more. Thus, they often mediate private
information and perform sensitive operations for the end-users.

Web applications are regularly the targets of different attacks,
from Cross-Site Scripting through framing-based attacks to TLS
downgrading. Researchers and practitioners have developed vari-
ous mitigations for these attacks, typically delivered through HTTP
headers from the server and subsequently enforced by the client.
For instance, the server may define the Content-Security-Policy
header to control script inclusion and framing by third-party pages.
However, given the capabilities mentioned above, extensions may
tamper with such headers, effectively disabling well-configured se-
curity mechanisms and, thus, degrading the applications’ security.

Prior studies have reported the abuse of extensions to perform
nefarious actions such as history-sniffing, data theft, or ad-injection
[4, 21, 46, 48, 55, 56]. Bauer et al. [7] showed potential threats posed
by extensions that can modify HTTP headers. Kapravelos et al. [33]
analyzed malicious behavior and reported 24/48,332 Chrome exten-
sions that modified security-related headers. In 2015, Hausknecht
et al. [27] showed that extensions might need to alter CSP to allow
intended functionality and proposed an endorsement mechanism
to enable these. However, any security header alteration may lead
to potentially dangerous consequences due to disabled security
mechanisms. A preliminary study by Agarwal and Stock [3] also
indicated that extensions alter security headers. However, their
work suffered from “critical errors” [2] that led to incorrect findings
and their paper to be withdrawn. Hence, our community currently
lacks any systematic study to assess the inadvertent modification or
removal of security-critical headers and their impact on the Web.

To close this research gap and study such behavior at scale, we
present an automated pipeline to detect extensions that alter se-
curity headers using a hybrid analysis technique. The framework
statically analyzes the codebase and instrument extensions to ob-
serve their behavior at runtime and detect potentially harmful
extensions. We also review the risks associated with this behavior
and its impact on theWeb’s security. Our findings show that at least
1,129 extensions in Chrome inadvertently interfere with security
headers, affecting millions of users on high-profile sites.

To summarize, the key contributions of this study are:

https://orcid.org/0000-0003-0110-0014
https://doi.org/10.1145/3548606.3560685
https://doi.org/10.1145/3548606.3560685
https://doi.org/10.1145/3548606.3560685

• We present our automated framework to detect extensions
that alter security headers, ultimately undermining the se-
curity boundaries desired by the Web application.

• With our framework, we conduct a large-scale study with
three snapshots of the Chrome Web Store and show that
1,129 extensions alter security-related headers, thus influ-
encing or even undermining security mechanisms.

• We conduct an additional analysis between the three snap-
shots of the Chrome extensions and discuss the temporal
evolution of the extension ecosystem.

• We outline the implications of modifying different security
headers and discuss specific cases from our analysis.

• We show the versatility of our framework by applying it
to Firefox and making our pipeline publicly available [1] to
encourage extension stores to include it in their vetting.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the relevant security headers we con-
sider in our work. Specifically, we introduce all headers that we
observed in our analysis, which have a clear security relation and
are not deprecated (such as the X-XSS-Protection header). Subse-
quently, we outline the general architecture of browser extensions
and survey-related work in the space of extension security.

2.1 Security-related Response Headers
HTTP security headers are a subset of standard HTTP headers that
mediate security-specific information between the server and the
client. The Web server sends necessary security policies within the
response headers to the browser when a user visits any Web site.
Upon receiving the response, the browser enforces these security
policies for the given site on the client. Altering these headers in-
flight may potentially disable the desired defense mechanism, e.g.,
framing control, and expose an application to the associated types
of attacks, e.g., clickjacking. In the following, we briefly outline the
server-sent response headers that influence security mechanisms.

Content-Security Policy (CSP): Although initially introduced
to mitigate cross-site scripting (XSS), this header has undergone
several revisions over the years to control framing and enforce
secure communication channels on the client [30]. The server con-
trols how the browser should handle different content for a given
Web site through various CSP directives, such as scripts, images, or
forms. These directives contain the allowed origins and instruct the
browser to load resources only from those origins. This primary use
case was often the topic of modifications in CSP; e.g., to eliminate
the dreaded ’unsafe-inline’ keyword, CSP’s Level 2 introduced
nonces and hashes to selectively allow the inline scripts from the
developer. In Level 3, CSP added the ’strict-dynamic’ keyword
to enable scripts trusted through nonces or hashes to programmati-
cally add additional script resources while simultaneously disabling
a host-based allowlist. Notably, CSP is designed in a backward-
compatible fashion, i.e., combining nonces with ’unsafe-inline’
will enable modern browsers to rely on nonces (i.e., they ignore
’unsafe-inline’), while legacy browsers still execute the inline
scripts even without supporting nonces.

Orthogonally, frame-ancestors limits the URLs which can ren-
der the current Web page inside an iframe, thus mitigating click-
jacking attacks. CSP also contains directives to enforce TLS over
an insecure connection and prevent any man-in-the-middle attack.
For instance, the block-all-mixed-content directive instructs
the browser to block all mixed content on the Web page while the
upgrade-insecure-requests directive forces the browser to up-
grade all HTTP resources and links to HTTPS. Entirely removing
CSP headers obviously disables all available use cases, yet manipu-
lations within the directives may also expose the client to otherwise
mitigated XSS attempts.

HTTP Strict-Transport-Security (HSTS): The server defines
the HSTS header to ensure a secure communication channel be-
tween the client and the server and prevent any man-in-the-middle
attack such as protocol downgrade attacks and cookie hijacking [28].
When the browser receives this header, it automatically upgrades
any HTTP request to HTTPS for the given host. The browser can
cache this setting for a given period, as specified by max-age direc-
tive (at least one year as per the recommended standards), while the
includeSubDomains directive instructs the browser to load all the
subdomains for the given host over HTTPS as well. Thus, altering
this header can undermine HSTS enforcement, opening the client
up to protocol downgrading attacks and potential cookie leakage.

X-Frame-Options (XFO):TheX-Frame-Options header defends
against click-jacking attacks on the client side. It allows the server
to restrict their Web site to be framed inside another Web site
(e.g., iframe) over same or different origin [29]. For instance, one
can entirely disable framing for their site using DENY attribute or
only allow framing from the same-origin pages using SAMEORIGIN
attribute. While CSP’s frame-ancestors is the desired way to pre-
vent framing-based attacks, websites still deliver the XFO header
more frequently than the better CSP-based alternative [49]. Further-
more, in the presence of frame-ancestors, the X-Frame-Options
header is ignored by modern browsers; however, Web sites often
use both, often with conflicting security guarantees [10]. Neverthe-
less, if only XFO is present, this is used to control framing, such
that interfering with this may enable click-jacking attacks.

X-Content-Type-Options: This HTTP header aims to thwart
the MIME-type sniffing vulnerability on the client side by instruct-
ing the browser not to determine the MIME type of the content and
obey the values specified by the Content-Type header. Whenever
a user accesses any uploaded file for which either the server sends
no Content-Type header or with inappropriate values, the browser
"sniffs" the resource to determine its content type. This can lead
to dangerous situations, e.g., when the client detects the uploaded
file as HTML. By setting the nosniff attribute for this header, the
server instructs the browser not to sniff the MIME type of any
resource. Conversely, dropping the header leaves the application
vulnerable to content sniffing.

Cross-Origin Resource Sharing (CORS): CORS is a mecha-
nism by which the server can instruct the browser to make con-
tent available to JavaScript even though the content comes from
a different origin than the requesting page [42]. However, the
server can use Access-Control-Allow-Origin with either an al-
lowed origin or a * wildcard to control this interaction. This can
be combined with Access-Control-Allow-Credentials, which
enables access to credentialed requests, such as those with cookies

attached to them. Note that combining a wildcard with credentials
does not work, as CORS-enabled browsers ignore the credentials
flag in this case. Moreover, Access-Control-Allow-Methods and
Access-Control-Allow-Headers enables complex requests with
non-standard methods or request headers. Notably, CORS is server-
sent but enforced by the browser; hence altering them may allow
cross-origin read access to otherwise unprivileged JavaScript.

Set-Cookie: Orthogonal to headers that explicitly control se-
curity mechanisms, cookies also carry security attributes. These
range from HttpOnly, to disallow access to a cookie from JavaScript
and mitigate XSS attacks, through Secure (to only send cookies on
HTTPS connections) to the SameSite attribute. SameSite cookies
intend to protect against Cross-Site Request Forgery (CSRF) attacks.
Here, the browser only sends cookies on same-site requests. If any
of these properties are altered, cookies may be prone to stealing
through an XSS from JavaScript or accidental leakage in unen-
crypted requests. Moreover, if cookies are set to SameSite=none,
they will be sent along with cross-site requests, potentially leading
to exploitable CSRF flaws.

Additional Security Mechanisms: The Web servers can fur-
ther rely on several recent additions, such as Referrer-Policy
(to control when the referrer header is sent [57]), Permissions-
Policy (to selectively disable browser features like geo-location
[58]), as well as Cross-Origin-Resource-Policy, Cross-Origin-
Opener-Policy, and Cross-Origin-Embedder-Policy tomitigate
Spectre-like attacks and XS-Leaks [39–41].

2.2 Security-related Request Headers
Like server-sent response headers, request headers sent by the client
can also have a security impact. In the following, we provide an
overview of relevant headers and explain how they can combat
specific threats on the server.

Referer and Origin: Browsers have two ways to communicate
to a remote server from where a request was made. They can either
use the Referer header, which sends the entire URL of the referring
document to the server. In modern browsers, though, only the
origin of a referring resource is sent when a request is made cross-
origin [43]. This can be used on the server to make a security
decision; notably, while an attacker can strip the Referer header, it
cannot be modified freely. Hence, a server could allow a particular
request only if the Referer header is present and has a specific
value. Since this potentially leaks sensitive information (e.g., session
identifiers in the URL), it has a privacy-friendly counterpart in the
Origin header. This header, sent automatically by browsers on
CORS-governed requests and cross-origin form posts, only contains
the origin of the referring document. Relying on the Origin header
can be a meaningful defense against CSRF, as modern browsers
only omit it on same-origin form posts. Hence, if either of the values
is modified, this potentially undermines the server-side defense.

Fetch Metadata: Cross-site leaks [53] are a relatively new class
of attacks. Similar to Cross-Site Request Forgery (CSRF) attacks,
these occur because the server delivers content to the browser
without knowing a) who made the request (the user or a script),
b) the origin of the request, and c) as what the resource was in-
cluded. To rectify this, the W3C has proposed the so-called Fetch
Metadata Request Headers [59]. The core idea is for the browser to

indicate to the server the information it needs to make security
decisions. This is done by sending multiple HTTP request head-
ers, which the server can take into account. If implemented in the
browser, Sec-Fetch-Site indicates whether a request is coming
from the same origin (same-origin), the same site (but different
origin, same-site), from an entirely different site (cross-site),
or is triggered by a user typing a URL into the address bar (none).
This header enables the server to, e.g., mitigate CSRF by simply ig-
noring requests that are not (at least) same-site. Sec-Fetch-Dest
is used to inform the server about the type of resource requested.
This header is helpful for the server to decide whether a certain
document should be returned, e.g., when an image is loaded as
an iframe to measure load time for an XS-Leaks attack [53]. Fur-
thermore, Sec-Fetch-Mode communicates which mode is used for
a particular request, such as navigate to inform the server that
a request is the result of top-level navigation. The last relevant
header is Sec-Fetch-User; it informs the server whether a user
action caused a request or not, which can be used by the server to
detect a potential CSRF attack.

upgrade-insecure-requests:With this header, the client can
inform the server about using its preference to use an encrypted
connection. While, fortunately, HTTPS is increasingly used [25]
with full browser support, this header nevertheless informs the
server that the client can handle secure connections. Hence, while
arguably, it might not serve much of a purpose in the modern era,
it should not be dropped to give a false impression that the client
does not fully support HTTPS.

2.3 Extension Architecture
Browser extensions are lightweight add-ons that enhance the user
experience on the client side by utilizing the extension-specific
APIs exposed by the corresponding browser.

Seminal works by Barth et al. [6] and Carlini et al. [11], respec-
tively, argued for fine-grained privilege separation based on the
principle of least privilege and component isolation between the
extensions and native applications within the browser ecosystem.
Modern browsers enforce these principles as follows: each exten-
sion has amanifest where the developer defines the metadata of the
application, such as the API permissions required to perform privi-
leged operations, the target hosts on which it should operate, and
other operational configurations. It also consists of different script
components that contain its core logic. If appropriately configured,
their cross-origin capabilities are not governed by the Same-Origin
Policy (SOP). Instead, the extensions can make authenticated fetch
requests to allowed hosts and execute JavaScript within Web ap-
plications. The background script, often called the extension core,
runs in a single isolated process as a separate component. It has
access to the highly privileged, feature-rich Browser Extension
APIs to perform a multitude of functionalities. These functionalities
include accessing browser history, periodic script execution in the
background, managing the list of extensions installed, and launch-
ing or uninstalling them as desired. It can also passively intercept
or actively drop, issue, or modify requests for any given Web site.
Hence, extensions are more potent than regular Web applications,
given the wide range of operations they can perform on the client,
such as making cross-origin requests. Each content script runs as a

Figure 1: Extension with header-modification capabilities

separate instance and within the context of any given Web site. It
can directly interact with the page, modify its contents and further
execute its script from within the context of the webpage unless
this is forbidden through per-site security mechanisms such as CSP.

To access any extension API, browser API, or the Web site’s
content they intend to use in their components, the extension de-
velopers must declare its corresponding permissions in the mani-
fest. Upon an extension’s installation, the user must grant all the
required permission to enable the extension. For example, Figure 1
illustrates an extension that holds the privilege to intercept the
client-server exchange in its background. In this example, the ex-
tension changes the value of the X-Frame-Options header from
DENY to ALLOWALL to override the server’s security decision to dis-
allow framing. While it is necessary to declare permission to use
privileged APIs, it must also declare the host permissions on which
the extension core should operate. For instance, if an extension in-
tends to intercept and modify request headers on example.com, it
needs to a) declare webRequest and webRequestBlocking as API
permissions and b) example.com as a host permission.

Although it is recommended for the developers to request mini-
mal permissions for their target functionality, prior studies have
shown that only a few extensions adhere to this policy [7, 32, 33].
Moreover, once the user grants the required privileges to these ex-
tensions at install time, the user does not control how and when the
extension utilizes the granted privileges to carry out their functions
in the background andwithinwhat context. Thus, an extensionwith
elevated privileges can be harmful to the security of the application
and the sensitive data processed on the client side.

2.4 Related Work
Malicious Browser Extensions: Given the higher privileges of ex-

tensions, they are a prominent vector for attackers to abuse them
for nefarious purposes. Thomas et al. [55] and Xing et al. [60] indi-
vidually conducted a longitudinal study and showed that over 300
extensions inject unwanted ads from illegitimate sources into the
webpage for monetary purposes. Around the same time Kapravelos
et al. [33] conducted a large-scale study with over 48K Chrome
extensions to identify malicious extensions using dynamic analy-
sis and HoneyPages. They found 24 such extensions that altered
security-related headers but did not elaborate on the impact of
these modifications. While they explicitly labeled 11 of them as ma-
licious for injecting security-related headers, we instead measure

this behavior from a different vantage point where these actions
do not necessarily indicate malice and may be required for benign
reasons for the extensions. We further open-source our pipeline and
contact extension developers to better understand the underlying
issue pertaining to this behavior. Bauer et al. [7] statically examined
the privileges of top 1,000 Chrome extensions and described threat
scenarios where they could be abused as a potential attack vector
for a multitude of attacks on the client. They highlighted that ex-
tensions could alter security headers to bypass security restrictions
but did not measure if this occurred in the wild.

Perrotta and Hao [48] and DeKoven et al. [21] further affirmed
in their respective works that extensions are often abused to install
malware on the client and may serve as an integral component
of a botnet framework over the Internet, owing to the capabilities
that they enjoy on the client side. Jagpal et al. [32] proposed a
fine-grained screening process that combines both static and dy-
namic analysis techniques to distinguish rogue extensions from
benign ones. Another line of work by the authors in [4, 46, 56]
reported that extensions also observe users’ activity on the Web
and may steal sensitive information and send it to third-party do-
mains to create unique user profiles. Chen and Kapravelos [12]
used taint-propagation techniques on 180K Chrome extensions
and identified 2.13% among those which leaked any private data.
Recently, Pantelaios et al. [47] also analyzed the updates received
by these extensions and reported that 143 (0.09%) of them were
initially benign but later turned malicious by receiving updates,
thus bypassing the initial screening.

Vulnerable Browser Extensions: Contrary to extensions actually
being malicious, they may also be the victim of attacks through
vulnerabilities in their code. Bandhakavi et al. [5] proposed an au-
tomated vetting tool to statically analyze the Firefox extensions’
source code to detect potential vulnerabilities that it may pose be-
fore submitting them to the store. Somé [52] analyzed extensions
from different stores and found 197 among them that could be ex-
ploited due to insecure message handling, leading to SOP bypasses,
cookie stealing, or history sniffing. Recently, Fass et al. [24] further
reported 278 such extensions in the Chrome ecosystem alone.

Header Interference by Extensions: While the studies on malicious
extensions show that the adversaries abuse extensions as an attack
vector on the Web for various nefarious purposes, they do not
cover the seemingly necessary modification of security headers
for the proper function of the extension itself. Moreover, design
choices and coding mistakes in the extension code may not only
threaten the integrity but also inadvertently degrade the security
of individual sites for visitors with such extensions. Thus far, there
have been two works that attempt to shine a light into this space of
potentially necessary yet security-degrading header modifications.
In 2015, Hausknecht et al. [27] argued that extensions often need to
modify CSPs. In particular, this is necessary to implement proper
functionality for the extensions that, e.g., need to inject their code
into the page. They moreover proposed a mechanism for extensions
to communicate their CSP needs explicitly. Agarwal and Stock [3]
conducted a preliminary analysis of Chrome extensions focusing
on four security headers. However, they relied on a network-based
approach, which required two requests. As noted by the authors [2],
this may lead to false positives given random server responses.

Therefore, basing the analysis on a network-based approach is
error-prone, and we choose a different approach instead.

Given the unreliable results reported by Agarwal and Stock [3],
although we observe that the above studies provide evidence that
extensions do modify security headers, they do not provide an in-
depth analysis of this behavior. Our work addresses this research
gap. Specifically, we focus on a large-scale analysis of (most likely)
benign extensions to understand how they inadvertently undermine
security mechanisms. Moreover, we target all relevant security
headers in our analysis, i.e., both request and response headers.

3 RESEARCH METHODOLOGY
We now describe our pipeline to detect extensions that modify
request or response headers. We use our pipeline to answer the
following fundamental questions in line with the discussed threat
as follows:

(1) How many extensions hold the privileges to intercept or
modify Web requests and responses, respectively?

(2) Howmany of the above also utilize the requested capabilities
to modify HTTP headers at runtime?

(3) Howmany of them actively inject, drop, or overwrite security-
related headers on respective target hosts?

(4) Which security headers are most often altered by these ex-
tensions? Do these modifications degrade the client-side
security of Web applications in the wild?

(5) Does this trend of security header interception and alteration
among extensions change over time?

To answer these questions, we implement an automated frame-
work to detect extensions that interfere with security headers. Fig-
ure 2 illustrates the various stages of our framework. The framework
begins by parsing the manifest of all downloaded extensions and
looks for permissions required to alter the HTTP headers. If no
such permission is requested, we discard the respective extension.
Then, it parses the background script(s) to locate the APIs used
to intercept headers at the source-code level and extract the host
permissions from each selected extension. The last static step con-
stitutes instrumentation, where it rewrites the native definition of
target APIs in all background scripts and stores it on the disk. This
allows us to record the headers before and after the execution of
the APIs for extensions within a single run. Given this hook, we do
not suffer from false positives through server-side randomness or
race conditions, as mentioned by Agarwal and Stock [2].

During dynamic analysis, the framework visits target hosts for
each instrumented extension and stores the original and modified
set of headers captured at runtime. Lastly, it analyzes the modifi-
cations made by the extensions and further flags them as either
benign or potentially dangerous.

3.1 Extension Analysis
Our framework utilizes a static analysis approach to precisely iden-
tify those extensions that can potentially intercept client-server
exchanges in the first stage of analysis. An extension is required to
hold both webRequest and the webRequestBlocking permission to
intercept and modify request and response headers synchronously
at runtime [19]. Thus, we first shortlist all those extensions that
request both the above permissions, declared in their manifest.

window.browser = window.browser || window.chrome;
var oneMoreDomain = "*://*.bar.com/";
browser.webRequest.onBeforeSendHeaders.addListener(

function(details) {
//core logic
return {

requestHeaders: details.requestHeaders
};

}, {
urls: ["*://*.foo.com", "https://*/*", oneMoreDomain]

}, ["blocking", "requestHeaders"]
);

Listing 1: Host permissions specific to the event listener.

In addition to the permission to use the APIs, an extension must
request host permission. Hence, we need to identify the hosts for
our analysis that successfully trigger the core logic for any given
extension. There are multiple ways by which an extension can
achieve this. (i) The first obvious way is to list all the target hosts in
themanifest [13]. In this case, the extension may have specific URLs
in their manifest such as http://www.example.org or may contain
wildcards such as http://*.example.org that allow them to operate
on all subdomains of example.com. (ii) Majority of extensions are
domain-agnostic and operate on all domains and thus, declare <all_-
urls>, http://*//* or https://*/* [16]. (iii) Many extensions declare
<all_urls> in their manifest yet operate only on certain domains by
specifying hosts within the webRequestAPI definitions to intercept
requests/responses, specify additional hosts in the manifest, or
perform domain checks in their code execute operations, as shown
in Listing 1.

An extension may also modify headers on any active tab of
the browser, irrespective of the hosts declared in the manifest,
using the activeTab privilege. This is when the user allows the
extension to operate on any host loaded on the currently active
tab [15] at runtime. Once permitted, the extension continues to
operate until the page closes or the user navigates to any different
origin. Since the use of activeTab necessitates user intervention at
runtime, we need to rely on extension rewriting to analyze such
extensions automatically. Thus, we flag them for further steps,
which we discuss in the next section.

Based on the list of extensions that have the proper API per-
missions, we can now extract URLs/hosts we need to visit for our
analysis. Our framework starts with gathering all the wildcards
and host-related permissions from the manifest and then extracts
the URL literals from the arguments of the webRequest APIs within
the code. Since our static analyzer is lightweight, it only extracts
literal values from the target APIs and does not resolve pointer
to any variables. In such cases, the framework falls back to the
hosts specified in their manifest of the extension. It further resorts
to Tranco Top 100 domains if no hosts are extracted from either
of the sources. Extracting target hosts from the code also allows
us to detect extensions that contain the definition of any of the
target APIs. This enables us to later investigate cases where our
dynamic analysis did not yield any findings, yet the extension had
the permissions and defined the logic to intercept headers.

The framework now processes the extracted hosts to replace
wildcards with its valid counterpart and store them for dynamic
analysis. For example, *://*.foo/*, and http://*.foo/*/*/* is
processed and resolved to http://www.sub.foo.com. This is in

http://www.example.org
http://*.example.org

Figure 2: An overview of the automated framework for analysis.

line with wildcards matching patterns for extensions [14]. How-
ever, there exist cases where this transformation would not yield ac-
curate results. For example, https://github.com/*/*/issues/*
and *://*/*/*.pdf would not yield a valid URL.

3.2 Extension Instrumentation
Once all the extensions with sufficient privileges to alter HTTP
headers and their corresponding hosts are identified, the next step
constitutes the instrumentation phase. The framework instrument
the extensions by overwriting the native definition of the corre-
sponding webRequest APIs within the extension-space to enable
an additional header-capturing mechanism while also preserving
the intended functionality. This way, it enables us to capture the
originally received headers by the API (as an argument) and their
modified counterparts returned by the callback method within a sin-
gle visit to the target host. For example, Listing 2 shows the instru-
mentation of the onHeadersReceived.addListener API, which
intercepts the response headers, which now record the headers
right before and after the callback method executes (as indicated in
line 6). In this case, the callback method (in line 5) is the original
callback method. While we capture the header data only from the
relevant APIs, i.e., onBeforeSendHeaders and onHeadersRecei-
ved, we similarly overwrite other webRequest APIs to record their
invocation (but not log any headers). This helps us to identify the
runtime usage for the requested webRequest privilege.

Concretely, the instrumentation proceeds as follows: The frame-
work identifies the background script(s) for each extension - from
the manifest and background pages, if any. Within these, it first
filters out "use strict" and non-ASCII characters that may in-
terfere with the execution of our ”API hooks” without making any

let _onHeadersReceivedListener =

browser.webRequest.onHeadersReceived.addListener;↩→
function _hookResponseListener(callback, filters, opts) {

function _hooked() {
let originalHeaders = arguments;
let newHeaders = callback(arguments);
recordHeaders(originalHeaders, newHeaders);
return newHeaders;

};
_onHeadersReceivedListener.apply(this, [_hooked.bind(this), filters, opts]);

}
browser.webRequest.onHeadersReceived.addListener = _hookResponseListener;

Listing 2: Instrumented API to collect response headers.

changes to the core logic. It then prepends the hooks for the webRe-
quest APIs within these scripts and overwrites them on disk. We
also modify the CSP defined by the extensions, wherever necessary,
to enable the XHRs necessary for our framework to collect header
data (for details, please refer to Appendix A).

While running our initial experiments, we noted that our frame-
work did not capture invocations of the hooked event listeners
even though the code clearly indicated this was implemented. On
further investigation, we observed the following classes of reasons:
(i) Many target domains are unreachable from certain geographic
locations. (ii) The target domain (or the client) does not serve all the
headers (or even a randomized set of headers) that the extension
could potentially alter. (iii) Few extensions declare wildcard hosts
and modify headers only on them, unresolvable by our framework
(e.g. *://*/*/*.pdf). Further, as noted in the previous section, an
extension may request activeTab permissions (which is equivalent
to all_urls but requires user intervention).

To cover these special cases, we run a separate analysis: we
modify any such extension to (i) have host permissions for a test

domain we own, and (ii) adjust event handlers to react to the said
domain. We then schedule the modified extensions to run against
our test domain, which serves all headers we consider.

3.3 URL Scheduling & Header Collection
The next stage constitutes dynamic analysis, where we load in-
strumented extensions separately in the browser and visit each of
the corresponding hosts. This enables us to capture the original
and modified set of headers at runtime within a single visit to the
site, meaning our approach is not prone to server-side randomness,
which might influence the results. Although the extension stores
do not accept extensions with obfuscated code [26, 37], we stress
that obfuscation also plays no role in our approach, as we hook
native APIs, which must be used to modify HTTP headers. For
each instrumented extension, we visit the associated target hosts:
any specific host extracted from the code or manifest, or Tranco
top 100 domains for extensions that operate on <all_urls>. For any
extension which falls under the aforementioned special cases (e.g.,
activeTab), we separately schedule the modified extensions to run
on our test domain.

We rely on puppeteer [18] to load the extensions and launch
browser instances. The framework launches the browser for every
extension and successfully visits each URL. It stays on the page for
six seconds after the page load to record the client-server communi-
cation. The hooked target APIs, on invocation, collect the original
and modified set of headers and then relays them to our logging
server. After every page visit, it clears the cache before visiting the
following URL. This is to avoid headers altered by an extension
in the current iteration being retrieved from the cache, possibly
tainting the analysis for the next extension.

3.4 Detecting Potentially Harmful Extensions
After capturing the extensions’ behavior at runtime, we have the
original headers and their modified counterpart available for analy-
sis. Now, we analyze the potential security impact of the modifica-
tion for each extension/URL pair where we observed a difference
before and after the invocation of the extension’s callback function.

The framework retrieves the original and modified set of headers
for an extension, parses them, and compares one set of headers
with another to identify the differences among their values. If the
server sends multiple instances of the same header within a re-
sponse, or a single header holds multiple comma-separated values,
the framework groups all the distinct values for the given header in
a serialized structure and compares them accordingly. For instance,
in the case of the X-Frame-Options header, when an extension
modifies the header to enforce a relaxed version of the server-sent
policy, e.g., replace DENY with ALLOWALL, the framework identifies
the change and flag the extension asmodifiedHeader. If an extension
adds any security header for which there exists no ground truth
header, the analyzer labels the extension as injectedHeader. In con-
trast, if any ground-truth security header is removed or replaced
with an empty string, the extension is marked strippedHeader. While
we only analyze modifications among headers that we discuss in
Section 2, it is possible to extend the analysis to other headers
as well since the framework collects all the headers at runtime.
Once the framework detects all the modified, injected, and dropped

2020 2021 2022

Total downloaded extensions 186,434 174,355 180,361
Actual extensions 166,932 154,415 147,334

Extensions with webRequest 17,536 10,620 9,298
Extensions with webRequest &
webRequestBlocking 14,821 7,972 6,720

Extensions for dynamic analysis 14,052 7,660 6,505
- targeting <all_urls> 11,824 5,312 4,659
- targeting specific hosts 2,228 2,348 1,846

Extensions with relevant API calls 3,049 3,147 3,145

Table 1: Overview of chrome extensions from each snapshot

headers, it then reports whether an extension exhibits benign mod-
ifications or any suspicious behavior based on the above operations
on the target security headers.

4 CHROME EXTENSION ANALYSIS
We report on a large-scale analysis with three snapshots of all the
downloadable Chrome extensions in June 2020, February 2021, and
January 2022, respectively. These datasets, as shown in Table 1,
consist of 186,434, 174,355 and 180,361 extensions, respectively.
Notably, there is an overlap of 109,311 extensions, among 92,441 of
which were not updated between the three snapshots. To analyze
each extensions’ modifications, we employ the Tranco Top 100
domains based on the list of November 1, 2021 (ID: Y3JG), as well as
those URLs we extract from the manifest or code (as in Section 3).

4.1 Permissions & Source Code Analysis
We download the three snapshots of Chrome extensions by extract-
ing all the extension IDs from the Chrome sitemap [20] and down-
load them from a publicly accessible link.Similarly, we download
Firefox extensions by extracting the information from the extension
search [45]. Our framework begins by extracting the crx packages
from the downloaded sets of extensions separately. It filters out
those extensions, which are essentially themes or invalid exten-
sions, in its preliminary phase of screening (as shown in Table 1).
It then checks for the required privileges, and host permissions
declared in the manifest. Doing so, we identified a total of 17,536,
10,620 & 9,298 extensions from the respective snapshots, which
requests the webRequest privilege to intercept headers. We further
narrow it down to extensions with both the required permissions.
In the second round of screening, our framework then filters out
those pre-selected extensions which do not define any background
script and page in their manifest or if the scripts are missing from
the directory. At this stage, we obtain a total of 14,052, 7,660 &
6,505 valid extensions, which hold the privilege to synchronously
intercept and modify HTTP headers at runtime and consider them
for the next stage of analysis.

For the above-selected extensions, the static analyzer component
now parses the manifest to identify the background script(s), inject
the hooks that overwrite the webRequest APIs, extract host URLs
from them, and additionally determine the usage of the relevant
APIs at source-code level. Here, we identify 3,049, 3,147, and 3,145
extensions for the three snapshots, which provide some evidence
of header interception based on the static analysis. We categorize

https://tranco-list.eu/list/Y3JG

Operational Stage 2020 2021 2022

Considered extensions 14,052 7,660 6,505
Successfully loaded 14,030 7,643 6,486

Registered any handler 9,842 5,172 5,031

Registered relevant handlers 2,735 2,785 2,713
- onBeforeSendHeaders 1,695 1,744 1,672
- onHeadersReceived 1,639 1,607 1,598
– both 599 566 557

Triggered relevant handlers 2,499 2,577 2,553

Table 2: Overview of dynamic extension analysis

them based on their target hosts, i.e., whether they operate on all
hosts or a particular set of the host(s). As listed in Table 1, we
observe that a majority of extensions can operate on all_urls.

The framework now injects the instrumented hook, as described
in Section 3.2, within all the background script(s) for each of these
extensions. At this stage, we identify a total of 3,294, 2,723 & 2,266
extensions among the three snapshots, respectively, which contains
content_security_policy definitions. The framework then adds
the remote server’s location to the connect-src directive to allow
XHRs among them and, thus, header storage for further analysis.

4.2 Instrumentation Analysis
Before we describe our findings from the dynamic analysis of the
extensions, we first measure and discuss the operation of the in-
strumented hooks within these extensions at runtime.

Table 2 summarizes the operation of the instrumented hook in-
jected into the extensions during dynamic analysis. For the three
sets of extensions, we observe that the hook is successfully injected
into ∼99% of the extensions at runtime, and the overwritten func-
tionality is executed without any error. For the rest, 26 extensions
fail to load at runtime. However, this was not an artifact of our
injection but somewhat related to syntax errors in the original
extensions across the datasets.

We observe that a total of 9,842, 5,172 & 5,031 extensions from the
respective snapshots register at least one event listener for different
webRequest APIs. However, we only focus on the two relevant APIs
that allow request or response header interception. We find that
around 2,735, 2,785 & 2,713 extensions from the respective sets
register an event listener for either of the two APIs as mentioned
above. Notably, this number is well below the one shown in Table 1
for the static analysis. We manually sampled extensions containing
invocations in the JavaScript code, but for which our analysis did
not trigger. Doing so, we found the discrepancy primarily comes
from extensions that only register these event handlers on certain
conditions, e.g., configuration by the user.

Finally, the number of extensions for which a relevant handler
was triggered is also below those that registered an event handler
in the first place. To understand this, we sampled 20 extensions
for manual analysis from each set. In all cases, the analysis did not
yield results either because our framework failed to extract hosts
from the code, since we do not resolve pointer to the variables, or
the extension only triggered its functionality on certain runtime
conditions. Note also that given the overlap between the datasets,
151 non-triggering extensions are present in all three datasets.

4.3 Results and Overall Impact
In total, 1,129 unique extensions across the three datasets interfere
with any of the security headers we analyzed. Of these, 867 tam-
per with server-sent headers, whereas 315 extensions tamper with
client-sent headers; i.e., 53 extensions alter both server- and client-
sent security headers. Further, 94 of them alter any of the security
headers only on our test domain, highlighting the necessity for the
rewriting discussed in Section 3.3. While 10/94 rely on activeTab,
the target hosts were unreachable or unresolvable for the rest by
our pipeline before. In the following, we provide an overview of
the most prevalent headers and their respective modifications.

4.3.1 Response Headers. Table 3 shows the overview of our results
for response headers, i.e., those sent by the server and enforced
by the client. The data is split between extensions that altered
headers in 2020, 2021, and 2022 datasets, respectively. Naturally,
the extensions overlap across the dataset, i.e. extensions that are
available on the store in 2022 and modified headers since 2020
are included in all three snapshots. We find that XFO and CSP
are the most affected server-sent security headers for each group.
This comes as no particular surprise, given that extensions often
attempt to load content in frames or inject their scripts into pages,
both of which are actions that are made more complicated (or
impossible) through XFO and CSP, respectively. However, we also
find that they frequently inject CORS’ Access-Control-Allow-
Origin to allow for cross-origin read access from JavaScript. For the
remaining security headers, X-CTO and HSTS are only interfered
with by 13 and 15 extensions, respectively, across all groups. For
Referrer-Policy, we only find alterations by eight extensions.
We also note that neither Permissions-Policy nor COOP, COEP
and CORP is particularly popular targets for tampering, most likely
because they are only rarely used in practice. One notable example
is FasterTabs (60K+ installs) that drops all the headers ending with
“icy”. In the following, we dive deeper into the more frequently
modified headers and the associated security impact.

Content-Security-Policy: Table 4 shows an overview of the
top 10 most injected, dropped, and modified directives for different
extensions across all the snapshots. Note that if an extension drops
an entire CSP header, we count every directive in the original CSP
as implicitly dropped. This is because by dropping the entire header,
the extension undermines the control of each directive in the origi-
nal policy. Overall, 205 extensions strip the entire CSP header, and
68 among them span the three datasets. Almost all directives are
also injected by at least one extension. Our analysis shows that
extensions such as NoScript make use of CSP to block content en-
tirely, which is why these and other similar extensions cause several
injected directives. On the other hand, we observe that the relevant
directives for XSS mitigation (i.e., script-src and default-src
are dropped by 274 and 263 extensions on at least one domain. The
most notable case with over 1M installations is the 2020 version
of Fair AdBlocker , which we observed to be dropping CSP headers
in their entirety for Google, eBay, and many others. For 2021, this
version has been modified, though, and no longer drops the CSP
headers. Another notable example isHIRETUAL (30K+ users), which
drops CSPs on Twitter, Facebook, Google, and others. This tool,
which is meant to help recruiters source contact information, also
drops the X-Frame-Options header to enable framing. However,

https://chrome.google.com/webstore/detail/fastertabs/ieifbfnagndmfnolgicleegodabbjlnd
https://chrome.google.com/webstore/detail/noscript/doojmbjmlfjjnbmnoijecmcbfeoakpjm
https://chrome.google.com/webstore/detail/fair-adblocker/lgblnfidahcdcjddiepkckcfdhpknnjh
https://chrome.google.com/webstore/detail/hiretual-10x-faster-talen/jeablngoapekimaeoeclgcefdcpjhjcg

Security Headers 2020 (N = 14,052) 2021 (N = 7,660) 2022 (N = 6,505) TotalInj Del Mod Any Inj Del Mod Any Inj Del Mod Any

content-security-policy 29 189 134 319 23 204 149 339 24 225 157 376 507
content-security-policy-report-only 4 39 24 65 2 47 28 76 1 53 30 83 98
x-frame-options 2 266 13 281 3 300 15 317 4 303 17 321 469

access-control-allow-credentials 7 1 2 10 9 1 4 13 14 1 4 18 22
access-control-allow-headers 14 2 3 16 15 1 5 18 20 1 8 22 29
access-control-allow-methods 24 1 7 26 31 1 10 34 38 1 16 41 46
access-control-allow-origin 57 3 33 66 82 3 38 91 91 4 45 101 121
access-control-expose-headers 3 2 4 6 4 2 4 6 7 2 5 9 11

set-cookie 5 2 4 8 4 2 11 15 8 8 20 28 31
x-content-type-options 1 3 - 5 - 8 1 8 1 9 - 10 13
strict-transport-security - 7 4 9 - 6 2 6 - 9 2 9 15
referrer-policy - 1 2 3 - 4 2 6 - 5 2 7 8
permissions-policy - 1 - 1 - 2 - 2 1 4 1 5 5

cross-origin-opener-policy - 1 - 1 - 3 1 4 1 4 1 6 6
cross-origin-resource-policy - 1 - 1 - 2 - 2 2 6 - 8 8
cross-origin-embedder-policy - - - - - 1 - 1 1 2 - 3 3

Table 3: Distinct extensions that target different security headers sent by the server-side along with responses.

Directive Injected Dropped Modified Any

script-src 273 274 263 297
object-src 286 290 208 297
frame-src 264 267 262 306
base-uri 284 290 208 293
worker-src 283 289 206 294
connect-src 258 264 247 293
img-src 258 264 233 285
require-trusted-types-for 266 274 207 274
default-src 258 263 239 282
style-src 258 265 226 278

Table 4: Top 10 most frequently impacted CSP directives

this way, it undermines the security of all targeted sites even if the
tool is idling in the background. We further analyze the nature of
modifications within the script-src directive on different sites.
We observe that while the majority of them make identical changes
to the values across different websites, others modify values ac-
cording to what is sent by the Web server. For instance, DWStory -
Work Acounts Quick Access adds "thebodyofchrist.us" into the direc-
tive on all websites that send CSP. Over 80 extensions just replace
the original directive’s value with an empty string. Notably, the
extensions that drop CSP altogether amount to at least1 3,279,417+
installations, and those only modify CSP (in some form) have a
combined count of 3,202,903+ installs.

X-Frame-Options: Although framing-control can be imple-
mented through CSP, the vast majority of sites still rely on X-Frame-
Options [49]. Chrome only supports two modes: SAMEORIGIN &
DENY. When Chrome observes any other value, it fails insecurely,
i.e., setting the value to ALLOWALL has nomeaning to the browser, ig-
noring the header altogether. Hence, dropping the header or setting
to an unsupported value has no effect, i.e., no protection against
framing-based attacks. In our dataset, we found three notable ex-
tensions: Dark Mode for Chrome drops XFO on all domains (500K+
users). Eno® from Capital One (600K+ installs) in turn drops the
header on amazon.com. Finally, Notifier for WhatsApp Web (400K+

1install numbers are only accurate until 1000, then 1000+/2000+/...

installs) drops the XFO header on whatsapp.com. Generally speak-
ing, we observe XFO as the header targeted as often as CSP. While
this may be necessary for extensions to operate smoothly, none
of the descriptions of the highly ranked extensions alludes to the
undermining of clickjacking protection. We further analyzed 17
extensions in 2022 that modified XFO on different domains and
found that all of them relaxed the original policy by either setting to
“allowall” or values essentially discarded by the browser. 3/17 also
replaced “deny” with “sameorigin”. 6/17 extensions showed this
behavior on all domains. This behavior is consistent with the other
two datasets and does not change with websites. Such manipula-
tions are equivalent to dropping the headers and thus, disabling any
framing-protection altogether. In total, the number of installations
of available extensions that drop XFO at least once is 5,372,019+.

CORS: Dangerous misconfigurations for Cross-Origin Resource
Sharing require setting both Access-Control-Allow-Credentials
to true and Access-Control-Allow-Origin to a single specific
origin, in the presence of an * for the allowed origin, CORS fails
securely and does not allow credentialed requests. In our data, we
found a total of 121 extensions that altered the ACA-Origin header.
However, only Flexible Access Helper , combined the explicit addition
of an origin with allowing credentials. Notably, though, CORS can
still cause problems if an extension blindly injects an ACA-Origin
header with * into every response. In particular, this enables an
attack to access devices that are in the local network of their victim,
such as routers [23]. This careless injection is done by numerous
extensions, though, with Video Downloader Plus being the most
popular example with 800K+ installs.

Cookie Security Attributes:We found 31 extensions that mod-
ified the security properties of cookies, particularly the SameSite
flag. One notable example is HiFrame, which allows any page to
be loaded in an iframe. This extension, which only has around
500 users, also removes framing control directives (both CSP and
XFO) and sets all cookies to Secure; SameSite=none. Note that
Chrome forbids SameSite cookies to lack the Secure flag; hence
this is explicitly added by the extension as well. Surprisingly, the
documentation states, “This approach led to a simple plug-and-play
product that just works for most cases, and does it with minimum

https://chrome.google.com/webstore/detail/dwstory-work-acounts-quic/kbheaomjmobfmheiohhbfhplfjbkdbja?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/dwstory-work-acounts-quic/kbheaomjmobfmheiohhbfhplfjbkdbja?utm_source=chrome-ntp-icon
"thebodyofchrist.us"
https://chrome.google.com/webstore/detail/dark-mode-for-chrome/pjbgfifennfhnbkhoidkdchbflppjncb
https://chrome.google.com/webstore/detail/eno/clmkdohmabikagpnhjmgacbclihgmdje
https://chrome.google.com/webstore/detail/notifier-for-whatsapp-web/kaoholkoedbpjiangnchpfchhmageifp
https://chrome.google.com/webstore/detail/flexible-access-helper/ceohmoejcadhmgcdcichbbigodgdfilm
https://chrome.google.com/webstore/detail/video-downloader-plus/hkdmdpdhfaamhgaojpelccmeehpfljgf
https://chrome.google.com/webstore/detail/hiframe-the-hyper-iframe/joibipdfkleencgfgbbncoheaekffdfn

Security Headers 2020 (N = 14,052) 2021 (N = 7,660) 2022 (N = 6,505) TotalInj Del Mod Any Inj Del Mod Any Inj Del Mod Any

origin 45 2 11 50 67 1 8 70 83 3 11 92 133
referer 105 18 24 124 146 7 32 158 134 10 27 147 240

sec-fetch-dest - 1 1 2 3 1 8 9 5 1 12 15 16
sec-fetch-mode - 1 1 2 3 1 4 6 9 1 6 15 16
sec-fetch-site - 1 1 2 5 1 11 12 12 1 22 32 34
sec-fetch-user - 1 - 1 2 1 - 2 1 1 - 2 3

upgrade-insecure-requests - 2 - 2 1 1 - 2 1 - - 1 3

Table 5: Distinct Chrome extensions that target different security headers sent by client along with requests.

side effects.” — however, actually disabling the protection against
CSRF that SameSite cookies entail. Other examples include Duck-
DuckGo Privacy Essentials (5M+ users) that blocks all attempts to
set cookies and Multi Chat - Messenger for Whatsapp (40K+ users)
that sets SameSite=none. In total, the reported extensions amount
to at least 5,120,425 users.

HSTS: Across our three datasets, we found 15 extensions that
mangle with the Strict-Transport-Security header.Multi Chat
- Messenger forWhatsapp (40K+ installs), amongmany other popular
extensions, indiscriminately drops HSTS on all page loads. Overall,
however, HSTS does not appear to be a popular target, which is not
particularly surprising since enforcing HTTPS connections does
not usually hinder the necessities of extensions (such as loading
cross-origin resources, rendering pages in iframes, or injecting
scripts into pages with CSP). However, the user base for currently
available extensions is still significant, with 153,199+ installs.

4.3.2 Request Headers. Table 5 shows the overview of our analy-
sis for request headers, split into extensions that we observed to
interfere with certainty in 2020, 2021, and 2022 set. In total, 315
extensions interfered with any of the given security headers.

Generally speaking, by far, most changes occur for the Origin
and Referer headers, respectively. This is more pronounced among
recent extensions (i.e. after 2020), where 25% more extensions tam-
per with either of these headers.We did not find significant evidence
for interference with Fetch Metadata by extensions from before our
2021 snapshot, which is expected given their recent introduction.
Finally, we observe that upgrade-insecure-requests is only neg-
atively affected by two extensions (in the 2020/2021 intersection
set). Hence, this header remains largely unimpacted by the exten-
sions we tested. In the following, we dive deeper into an impact
analysis, showing how the modified, injected, or dropped headers
affect the security of each extension’s users.

Origin/Referrer: The extension Pure motion (40,000+ instal-
lations) which labels itself as a “video ad remover” injects fake
Origin and Referer headers into requests towards the supported
video platforms such as Dailymotion. Since the Origin header may
be used to defend against POST-based CSRF, this makes these plat-
forms susceptible to attacks. Our analysis also flagged Dictionary all
over with Synonyms as dropping the Referer. Assuming any server-
side check for the Referer could also take the security decision
based on the origin, this is not detrimental to security. Notably, the
CyDec Platform Anti-Fingerprinting extension (3K+ installs) seem-
ingly randomized the Referer. This could deter the functionality
if security checks are conducted based on the Referer.

Fetch Metadata: Since the Fetch Metadata specification is quite
new, we did not expect many extensions to manipulate this. How-
ever, newer extensions tend to be more aggressive towards these
headers, as shown by the number of modifications in 2021 & 2022.
In total, we found that 15 extensions in the 2022 dataset modified
Sec-Fetch-Dest. The one with the highest installation number
(7000+) was Find website used fonts. This not only set the dest
from iframe to main, thereby faking a top-level load of an actually
framed page, but also modified the Sec-Fetch-Site header to set
it to none (the value used for user-invoked top-level navigation by
typing in a new URL). This clearly undermines the security goal of
Fetch Metadata by pretending to make user-invoked requests.

4.4 Temporal Evolution
Our three datasets allow us to investigate the longitudinal evolution
of Chrome extensions over 19 months. Of the 647 extensions which
interfered with any security header in 2020, 143 had stopped doing
so in 2021. Of these, 115 had been removed from the store, 8 had
lowered their privileges, and 25 still had the capabilities but did
not use them in our automated tests. Manual checking indicated
that these changes related, e.g., to the header interception being
controlled through configuration options, as is the case for Eno®
from Capital One. We find similar trends for extensions that modify
headers from the 2021 dataset, where 177 stopped doing so in 2022.
Among these, 125 extensions were removed from the store; we do
not observe modifications by 38 extensions during our analysis,
while 14 of them reduced their permissions. We analyzed these
14 extensions to understand why they no longer need to modify
headers. Interestingly, 4 of these now define static rules, and the
other 4 define dynamic rules to modify headers in-flight, as per
MV3 standards. For instance, DSM Auto-Paste Chrome Extension
now defines static rules to drop CSP and XFO, as before, instead
of using the traditional webRequest API. Similarly, HTML Content
Blocker now defines dynamic rules to modify headers [17]. 6/14
extensions completely stopped modifying headers. Kurator used to
drop XFO on all domains but stopped doing so after our notifications
and reported this as an unintended action in their response.

Of the 406 overlapping extensions that interfered with headers in
all three datasets, 55 of them remained entirely unchanged. Among
14,052 extensions in 2020 with the permissions to modify headers,
7,466 were removed from the store altogether, whereas 137 no
longer requested permissions in 2021. For 7,660 extensions in 2021,
2,122 were removed from the store in 2022, while 176 reduced their
permissions and do not modify headers anymore. To understand
if the large number of removals in 2021 were related to the recent

https://chrome.google.com/webstore/detail/duckduckgo-privacy-essent/bkdgflcldnnnapblkhphbgpggdiikppg
https://chrome.google.com/webstore/detail/duckduckgo-privacy-essent/bkdgflcldnnnapblkhphbgpggdiikppg
https://chrome.google.com/webstore/detail/multi-chat-messenger-for/dllplfhjknghhdneiblmkolbjappecbe
https://chrome.google.com/webstore/detail/dllplfhjknghhdneiblmkolbjappecbe
https://chrome.google.com/webstore/detail/dllplfhjknghhdneiblmkolbjappecbe
https://chrome.google.com/webstore/detail/pure-motion/jmkaieepcjnofkicafdelmdpigjdankd
https://chrome.google.com/webstore/detail/dictionary-all-over-with/ahjhlnckcgnoikkfkfnkbfengklhglpg
https://chrome.google.com/webstore/detail/dictionary-all-over-with/ahjhlnckcgnoikkfkfnkbfengklhglpg
https://chrome.google.com/webstore/detail/cydec-platform-anti-finge/becfjfjckdhngmmpkhakoknnkgpgfelk
https://chrome.google.com/webstore/detail/find-website-used-fonts/lnebjgioddkafaldaaeooeghlcholnnp
https://chrome.google.com/webstore/detail/eno%C2%AE-from-capital-one%C2%AE/clmkdohmabikagpnhjmgacbclihgmdje
https://chrome.google.com/webstore/detail/eno%C2%AE-from-capital-one%C2%AE/clmkdohmabikagpnhjmgacbclihgmdje
https://chrome.google.com/webstore/detail/dsm-auto-paste-chrome-ext/ecdbmkcphlholpojdglodopmlaficcji?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/html-content-blocker/nobnkgabkebhhlgfddbemmefjnjnahoe?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/html-content-blocker/nobnkgabkebhhlgfddbemmefjnjnahoe?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/kurator/nfpoemjdmpnbcnidaedpngfikhlchicf?utm_source=chrome-ntp-icon

deletion of malicious extensions [34], we randomly sampled 20 of
them from the 2021 dataset. Out of those, none were malicious, but
the majority (17/20) were wallpaper extensions, which seemingly
originated from the same vendor. We, therefore, believe the drastic
change to result from such extensions. Further, from a list of known
malicious extensions [9], we found that only 30/7,466 removed
extensions were listed there, i.e., the vast majority were benign.

Moreover, we found that 56 extensions already were in the 2020
dataset and had relevant permissions but only started modifying
security headers in 2021. Similarly, 49 extensions with the privileges
to modify headers in 2021 only started doing so in the 2022 dataset.
We sampled 10 of these 49 extensions and analyzed the usage of
header-modifying APIs. An Online Shopping extension started in-
jecting Referer and Origin within request headers, potentially
to bypass server-side filtering. Similarly, another such assistant
now started altering ACA-Origin to access cross-origin resources.
Four other extensions (e.g. IDA and RSS Feed Reader) made logical
changes while the rest also added new features that required re-
laxed security restrictions imposed by CSP, XFO and ACA-Origin,
in particular (e.g. DuckDuckGo !bangs but Faster and D&D).

Notably, only 1,103 extensions with relevant permissions were
added between 2020 and 2021, and 160 elevated the required per-
missions (i.e., they were present before but lacked permissions). Of
these 1,263 extensions, 182 actually used their privileges to manip-
ulate headers. Similarly. for the 2022 dataset, we observe 892 new
extensions since 2021 that now could modify headers at runtime,
whereas 259 already existing extensions upgraded their permissions
to modify headers. 188 of these 1,151 extensions in 2022, also modi-
fied headers at runtime. We sampled and analyzed ten extensions to
understand the need to upgrade their privileges and modify head-
ers. Video Downloader for Vimeo set Origin to www.vimeo.com
to all outgoing requests to this domain, potentially to bypass the
newly added filtering mechanism on the server-side. Another such
extension, MarkDown Viewer dropped CSP on all domains to inject
and execute the script and present markdown in a readable format.

Given that we cannot rely on a snapshot from early 2020 to
compare the evolution, it is hard to judge whether new extensions
makemore excessive use of interception capabilities than older ones.
However, it is notable that considering only newly added extensions
from 2021 and 2022, 14.4% and 16.3% of them, respectively, used
their permissions to modify security headers, whereas, in the 2020
dataset, we observed only 647/14,052 (4.6%) extensions which utilize
their capabilities in our automated tests.

5 DISCLOSURE & NECESSITY FOR
MODIFICATIONS

Here, we discuss our disclosure to have the issues, answers from
developers to explain their reasoning for changes, and our manual
analysis of sampled extensions.

Disclosure & Developer Responses. From our preliminary analysis in
July 2021, we sent notifications to the developers of 327 Chrome and
47 Firefox extensions, which were live on the store, altered security
headers, and could be contacted. This was to allow developers
to address the underlying problem and to understand the design
choices behind such actions. We received 30 responses, categorized
as follows: (i) The developers acknowledged our report and the

potential threat of altering security headers and claimed to either
take down the extension or fix the issue. (ii) They are unaware of
potential security implications of altering certain headers. (iii) 24/30
of them also explained the benign usage behind altering security
headers such as injecting external images or iframes and allowing
requests. (iv) They have an unidentified bug or legacy code.

We observe that 220/327 chrome extensions still modify headers
in the 2022 dataset. 13 extensions for which we received feedback
were either removed or do not modify headers anymore. We have
sent out notifications to 379 more developers from the 2022 dataset
who were not contacted before. While the above responses repre-
sent only <10% of extensions, we infer that most extensions indeed
exhibit such behavior to enable benign functionalities yet are un-
aware of its security implications on the application in many cases.

Manual Analysis. To better understand why extension developers
modify security headers, we manually sample and investigate 50 ex-
tension, spanning across 8 categories, reported by our pipeline. We
find that 44 of them modify headers for their desired functionalities
based on the description provided by them. Some of these func-
tionalities include injecting scripts and resources to highlight texts,
solve captchas and provide other text-based references to third-
party domains such asWikipedia. uMatrix development build & CSP
Safe Browsing replaces the server-sent CSP header with all-blocking
policy to prevent any and all content-based injection attacks. Other
extensions often inject CORS-related headers to access cross-origin
resources or go after CSP and XFO to bypass framing-based re-
strictions and allow functionalities such as dashboards to store and
access resources, open multiple pages in a single tab, and provide
additional tools on social media platforms such asWhatsApp.

While a majority of these extensions alter headers for benign rea-
sons in some sense, these alterations are often extreme or could be
avoided without any security degradation. For instance, extensions
that intend to inject script from a single remote location should
not drop the entire CSP header, as seen in many cases, but instead,
make bare-minimum changes to the original policy. Similarly, if an
extension intends to operate only on specific hosts, such as social
media platforms, it should restrict its actions only to those hosts
instead of all_urls. For example, Loop11 User Testing states in its
description - "The Loop11 extension will lay dormant and will only be
active during a usability test which you have opted in to". However,
this is not the case as it alters headers on all the pages when active.
Extensions that drop CSP & XFO to allow dashboards and other
in-context features may instead use window or extension pop-ups.

6 SECURITY IMPACT OF ALTERATIONS
While more than 1000 extensions modify security-related head-
ers, these changes may not always degrade the client-side security,
as with NoScript, AdBlocker, and other privacy-preserving exten-
sions. To better assess the overall impact of these modifications, we
perform additional analysis to detect changes for individual head-
ers. While detecting modifications among single-valued headers is
seemingly straightforward, we apply extended parsing techniques
for multi-valued headers (e.g., HSTS & CSP), as also shown by Roth
et al. [50], and discuss popularly targeted headers here 2.

2Please refer to Appendix C for details on other security headers.

https://chrome.google.com/webstore/detail/%E7%BD%91%E8%B4%AD%E6%B7%98%E5%AE%9E%E6%83%A0-%E5%A4%A7%E6%83%A0%E8%81%9A-%E5%85%A8%E8%83%BD%E8%B4%AD%E7%89%A9%E8%BE%85%E5%8A%A9/cpgldbdkmolobbegppphcpmhbnidkhje?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/%E4%BA%AC%E6%8E%A8%E6%8E%A8%E4%BA%AC%E4%B8%9C%E5%B0%8F%E5%8A%A9%E6%89%8B/dpgoneajblildfpfabjldhhhdanlmenk?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/ida/mjfjiglcnojlicbkomcoohndhpceflbp?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/rss-feed-reader/pnjaodmkngahhkoihejjehlcdlnohgmp?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/duckduckgo-bangs-but-fast/pbegadjnjekcbdehmfljcnjohjiljpji?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/dd-beyond-dm-screen-spell/plmclacdpenibhmjmbnbdbefpjnjfclo?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/video-downloader-for-vime/cgmcdpfpkoildicgacgldinemhgmcbgp?utm_source=chrome-ntp-icon
www.vimeo.com
https://chrome.google.com/webstore/detail/markdown-viewer/ckkdlimhmcjmikdlpkmbgfkaikojcbjk?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/umatrix-development-build/eckgcipdkhcfghnmincccnhpdmnbefki
https://chrome.google.com/webstore/detail/csp-safe-browsing/adkkgplgngnplaefkicpdddbenmnjkad/related
https://chrome.google.com/webstore/detail/csp-safe-browsing/adkkgplgngnplaefkicpdddbenmnjkad/related
https://chrome.google.com/webstore/detail/loop11-user-testing/bhopfldlicecjkdoidhjfkhbndcjfomf

CORS Headers. We observed 110 extensions that injected ACA-
Origin in our experiment.While 84/110 only set the header value to
wildcard, the rest 26 set it to the requesting domains. Four of them
dropped this header, and 53 also modified the existing header value.
44/53 of these replaced the existing values with wildcards, while 6 of
them set it to the value of requesting domains. Injecting or modify-
ing the header with value set to wildcard may allow unintended ac-
cess to credential-less resources to all the domains, while appropri-
ate non-wildcard values, when combined with ACA-Credentials,
may allow unintended access to credentialed resources as well. 6/26
extensions that inject ACA-Originwith value set to the domain also
inject the ACA-Credentials header, and three others also modify
this header, when already present, to allow the credentialed request.

XFO. 446 extensions across all datasets dropped XFO, while 21
modified the header by replacing the value either with its relaxed
counterpart (e.g., deny to sameorigin) or with garbage value. Thus,
this clearly indicates lowering security restrictions by extensions.
On the contrary, 4 extensions injected XFO with sameoriginwhile
one of them replaced allow-from https://www.icloud.com to
sameorigin on apple.com. These changes indicate enhanced secu-
rity but may also break functionality.

CSP. While dropping the entire CSP header shows apparent security
degradation, we discuss the impact of other alterations here.We first
present the overall impact of injections and then show directive-
level modifications using the default-src directive, as it serves as
a fallback to other content-based directives when not specified.

Injections: 40 extensions injected CSP while 4 also injected CSP-
RO. While it may seem that the injections may enhance security,
this is not always the case. For instance, the policy injected by 3
extensions on theguardian.com, as in Appendix B, shows no im-
provement as it specifies trivially bypassable scripting restrictions.

Modifications: 19 extensions explicitly stripped the default-src
directive from within the CSP header. This may be dangerous if
other content-based directives (e.g. script-src and style-src)
are not specified. 8/19 of these also strip script-src, disabling all
script-based protections originally desired by the server. 11 other
extensions inject this directive. As before, this may not enforce
additional security. For example, we observe one extension injecting
default-src with insecure values (unsafe-inline and unsafe-eval).
Lastly, 45 extensions modified values for the existing default-
src directive by either adding or removing allow-listed sources.
6/45 extensions also replace none with arbitrary hosts, e.g., one of
them replaces ’none’ with "* data: blob: ’unsafe-inline’
’unsafe-eval’" on GitHub domains. The exact impact of these
modifications depends on other directives and replaced values.

To summarize, most extensions alter headers, leading to relaxed
security restrictions. While some also attempt to enforce security
by modifying or injecting related headers, improperly configured
security policies in these cases, such as with CSP and CORS head-
ers, could still prove to be fatal. We assess the impact of these
alterations purely based on the header-based changes during our
analysis. The real-world impact of these changes may differ and
vary with applications. For instance, a Web site may not consider
the Origin header while processing the request; thus, altering them
will cause no harm. Similarly, any alterations with the HSTS header
for domains would depend on their presence on the preload list.

Header Injected Dropped Modified Total

content-security-policy 13 16 29 45
...-report-only 1 2 4 6
x-frame-options 1 19 4 23

ACA-origin 11 0 7 11
ACA-credentials 2 0 1 2
ACA-headers 6 0 5 6
ACA-methods 5 0 3 5
access-control-expose-headers 2 0 2 2

x-content-type-options 0 0 1 1

origin 4 0 2 5
referer 4 6 18 23
sec-fetch-site 0 0 1 1

Table 6: Firefox extensions that modify security headers

7 DISCUSSION
In this section, we discuss the prevalence of underlying issues
beyond the Chrome ecosystem and standards, the limitations of
our framework, and possible measures to alleviate the problem.

Extensions Beyond Chrome & Standards. To apply our framework to
another ecosystem, our versatile design allows for minimal changes:
we merely need to change from Puppeteer to web-ext [36] for Fire-
fox extensions. Hence, contrary to a patched browsing engine, our
approach is agnostic to newer Chrome versions and allows trans-
fer to other ecosystems. Doing so, we could extend our analysis
to all 23,363 Firefox extensions, as of April 2021, and analyze the
header-modifying behavior among them. Of the 2,551 extensions
that held the privilege to modify headers, 1,253 of them also had
the target API definitions at the code level. Overall, we identify
84/2,551 Firefox extensions which tamper with at least one security
header on their respective target hosts. Please refer to Table 6 for
detailed result for each headers. Unsurprisingly, these extensions
also find CSP and XFO among response headers as their biggest
roadblock for their operation. Although the total number of flagged
extensions is low, they affect a total of 504K+ users by modifying
CSP and 41K+ users by altering the XFO headers alone. This shows
that the underlying behavior is prevalent across ecosystems and
may jeopardize the client-side security of the Web in all browsers.
We only considered Chrome & Firefox extensions here since these
extensions could be ported to compatible formats for other brows-
ing ecosystems, such as Safari [31], or directly installed from the
Chrome Web Store, as in the case of Opera & MS Edge [8, 54].

With the increasing transition to the new MV3 standards in
Chrome, extensions may use the new declarativeNetRequest
API to define static header-modifying rules, which were not in-
cluded in our study. We separately analyzed those extensions that
follow the new specifications to modify headers in 2022 and found
that 13,521 extensions adhere to MV3, and 82 of them also spec-
ify static rules to alter 14 different security-related headers (as of
23.06.2022). For instance, Greenhub Free VPN , a popular VPN exten-
sion with 10K+ users, chooses to drop the CSP entirely, XFO, COOP
and COEP headers on m.facebook.com and mobile.twitter.com do-
main and their subdomains by specifying corresponding static rules.
Interestingly, Pincase with 2K+ users, also perform identical alter-
ations and to the same set of headers. Other such extension is Flyp
Crosslister with 10K+ users that nullifies CSP on facebook.com.

apple.com
theguardian.com
https://chrome.google.com/webstore/detail/greenhub-free-vpn-secure/knmhokeiipedacnhpjklbjmfgedfohco
m.facebook.com
mobile.twitter.com
https://chrome.google.com/webstore/detail/pincase-pinterest-video-i/poomkmbickjilkojghldlelgjmgaabic
https://chrome.google.com/webstore/detail/flyp-crosslister/kbflhgfmfbghhjafnjbgpiopcdjeajio
https://chrome.google.com/webstore/detail/flyp-crosslister/kbflhgfmfbghhjafnjbgpiopcdjeajio
facebook.com

While intuitively, the analysis may become easier by analyz-
ing the static manifest-defined rules, the documentation states that
header-modifying rules could also be added dynamically [17], which
again necessitates dynamic analysis. We observe such cases among
118 other extensions that only inject dynamic rules to potentially
modify headers along with other operations traditionally allowed
by webRequest API (e.g., redirection). Further, from the ongoing
discussions by Chrome Developers in public space [22], it appears
that header addition & replacement would still be allowed in MV3.
We believe this would again put an onus on the extension devel-
opers to correctly add/replace headers such that the changes do
not degrade the client-side security, as in the case of CSP, origi-
nally desired by the server. Notably, Mozilla will still allow header
modifications based on MV2 standards in the future [44]. We also
contacted other browser vendors to understand their roadmap for
transition to MV3. Brave, Opera, and Safari would still allow MV2
extensions, while MS Edge will allow them until June 2023 [35].

Limitations. We observed certain limitations of our framework dur-
ing our analysis. We do not inject our hooks into any external script
included in the background script. To measure its impact, we parsed
the manifest and background pages to locate remote scripts. While
61 extensions, which could intercept headers, included remote code
in 2020, this was reduced to only 35 in 2022, indicating that the im-
pact of the remote script is very limited. However, we note that our
API instrumentation still captures any alterations made by exten-
sions with obfuscated code as we overwrite the native definition of
the APIs before any other script executes. Beyond that, our analysis
indicated that some extensions only install event handlers after user
consent or when an option is enabled. We do not create honeypages
or simulate user interactions, as in other related studies [33, 51] to
capture or fulfill any runtime checks; yet, our analysis reveals only
those extensions that alter security headers without any user inter-
vention. Thus, we do not capture any alterations for 223 extensions
where the target APIs were only registered but not triggered, of
which 88 overlap across the three datasets. All the above limitations
lead to our results being a lower bound of the gravity of the issue
of extensions that undermine the security. Moreover, we stress that
we assume extensions to be altering security headers inadvertently
and for benign purposes. Notably, our dynamic analysis is limited
when the manipulation is hidden behind a trigger condition. Hence,
this limitation also implies that it is unlikely we caught malicious
extensions on conditional triggers [33].

Call to Action. Generally speaking, we believe that the header mod-
ifications occur in a benign fashion, i.e., the extensions do not drop
the headers to undermine security on purpose. However, for the user,
this does not make any difference; their security is undermined.
Given that our results showed that even popular extensions with
more than 1M installs had such issues, users should be adequately
informed about the potential risk. Notably, the undermined secu-
rity does not have adverse effects on the developer but may well
be detrimental to the user base. For instance, a user that installs
an extension that drops CSP on all domains may be at severe risk
while using Internet banking or other critical Web sites. Hence,
users must be explicitly informed about these risks. This can be
achieved by incorporating our pipeline into the extension vetting
process and automatically adding a warning to the overview page

in the extension store if specific alterations are found. Naturally, our
pipeline is prone to malicious developers, e.g., if the extension only
starts interfering with headers days after installation. However,
assuming that the vast majority of extensions undermine security
inadvertently, such an additional vetting may also trigger the de-
velopers to find alternatives to the respective roadblocks they tried
to bypass by dropping headers. For example, tools that remove
XFO to allow framing of arbitrary pages could load those in popup
windows instead or only alter headers on specific pages where it
is necessary. These recommendations put an onus on the user and
require some technical understanding from them. However, this
would incentivize the developers to make minimal changes, explore
alternatives, and prevent users from "warning fatigue".

We envision Google & Mozilla can integrate our pipeline into
the vetting process. The sequential runtime of our pipeline scales
linearly with the number of URLs to test, but apart from the rewrit-
ing step, all other steps can be parallelized. Hence, our analysis
could be conducted in just a few seconds on every update on an
extension. This process must be repeated every time, as an exten-
sion with corresponding privileges could otherwise (inadvertently)
start altering security-critical headers in later updates or change
their targets. We have seen such cases in our temporal analysis,
e.g., Pure Motion, which intends to remove ads from videos with
more than 40K+ users, updated its host permissions by removing
33 URL patterns and adding another 42 of them.

8 CONCLUSION
In this work, we studied the inadvertent detrimental effect that
browser extensions can have on the Web’s security by modify-
ing the security-related headers. Such modifications occur when
extensions are blocked from operating seamlessly through mech-
anisms such as CSP, XFO, or Cookie Security attributes. To study
this problem space at scale, we present an automated framework
that identifies extensions with header modification capabilities and
instruments and dynamically analyzes them to detect those that
alter any security-related headers. From the three sets of Chrome
extensions downloaded over three calendar years, we find 1,129
unique extensions across the three datasets that alter at least one
security header sent along with the client-server exchange. Simi-
larly, we extend our analysis to the Firefox ecosystem and report
84 extensions to exhibit similar behavior.

While the number of reported extensions is small compared to
the entire ecosystem, our findings show the issues to be more preva-
lent than, e.g., extensions that turn malicious [47] or purposely alter
headers [33]. Considering the most-modified headers, CSP and XFO,
extensions interfering with those affected millions of unknowing
users. To enable stores to issue such warnings automatically, we
make our pipeline publicly accessible and call on different store
operators to incorporate it into their vetting process.

ACKNOWLEDGMENTS
We would like to thank our reviewers for their valuable feedback.
Special thanks to Ben Stock for insightful discussions throughout
this work. We would also like to acknowledge the suggestions by
Aurore Fass and Sebastian Roth to help better our work. This work

https://chrome.google.com/webstore/detail/pure-motion/jmkaieepcjnofkicafdelmdpigjdankd

was conducted in the scope of a dissertation at the Saarbrücken
Graduate School of Computer Science.

REFERENCES
[1] 2022. Black Canary Code. https://github.com/shubh401/black_canary.git
[2] Shubham Agarwal and Ben Stock. 2021. Critical errors in our recent MADweb

paper. https://swag.cispa.saarland/default/2021/07/19/madweb-headers.html
[3] Shubham Agarwal and Ben Stock. 2021. First, Do No Harm: Studying the manip-

ulation of security headers in browser extensions. In Workshop on Measurements,
Attacks, and Defenses for the Web (MADWeb) 2021.

[4] Anupama Aggarwal, Bimal Viswanath, Liang Zhang, Saravana Kumar, Ayush
Shah, and Ponnurangam Kumaraguru. 2018. I spy with my little eye: Analysis
and detection of spying browser extensions. In IEEE Euro S&P.

[5] Sruthi Bandhakavi, Samuel T King, Parthasarathy Madhusudan, and Marianne
Winslett. 2010. VEX: Vetting Browser Extensions for Security Vulnerabilities.. In
USENIX Security.

[6] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. 2010.
Protecting browsers from extension vulnerabilities. In NDSS.

[7] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, and Yuan Tian. 2014.
Analyzing the dangers posed by Chrome extensions. In IEEE Conference on
Communications and Network Security.

[8] Opera Blogs. 2021. Using Chrome Extensions in Opera. https://blogs.opera.com/
tips-and-tricks/2021/10/using-addons-from-chrome-in-opera/

[9] Mallory Bowes-Brown. 2021. Chrome Malicious Extension Listing. https:
//github.com/mallorybowes/chrome-mal-ids

[10] Stefano Calzavara, Sebastian Roth, Alvise Rabitti, Michael Backes, and Ben Stock.
2020. A Tale of Two Headers: A Formal Analysis of Inconsistent Click-Jacking
Protection on the Web. In USENIX Security.

[11] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. 2012. An Evaluation
of the Google Chrome Extension Security Architecture. In USENIX Security.

[12] Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Information
Leakage from Browser Extensions. In ACM CCS.

[13] Chrome Developers. 2012. Declare permissions. https://developer.chrome.com/
docs/extensions/mv3/declare_permissions/#host-permissions

[14] Chrome Developers. 2017. Chrome DevTools Protocol. https://developer.chrome.
com/docs/extensions/mv3/match_patterns/

[15] Chrome Developers. 2020. chrome.activeTab. https://developer.chrome.com/
extensions/activeTab

[16] Chrome Developers. 2020. Match Patterns. https://developer.chrome.com/
extensions/match_patterns

[17] Chrome Developers. 2020. Methods. https://3-72-0-dot-chrome-apps-doc.
appspot.com/extensions/declarativeNetRequest#method-updateDynamicRules

[18] Chrome Developers. 2020. Puppeteer. https://developers.google.com/web/tools/
puppeteer

[19] Chrome Developers. 2020. webRequest. https://developer.chrome.com/
extensions/webRequest

[20] Chrome Developers. 2022. Sitemap - Chrome Extensions. https://chrome.google.
com/webstore/sitemap

[21] Louis F. DeKoven, Stefan Savage, Geoffrey M. Voelker, and Nektarios Leontiadis.
2017. Malicious Browser Extensions at Scale: Bridging the Observability Gap
between Web Site and Browser. In USENIX Security Workshop on Cyber Security
Experimentation and Test.

[22] Chrome Developers. 2021. Manifest v3 : Web Request Changes.
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/
veJy9uAwS00/m/9iKaX5giAQAJ

[23] Christian Dresen, Fabian Ising, Damian Poddebniak, Tobias Kappert, Thorsten
Holz, and Sebastian Schinzel. 2020. CORSICA: Cross-Origin Web Service Identi-
fication. In ACM ASIA CCS.

[24] Aurore Fass, Dolière Francis Somé,Michael Backes, and Ben Stock. 2021. DoubleX:
Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In
ACM CCS.

[25] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring HTTPS adoption on the web. In USENIX
Security.

[26] Google. 2018. Chromium Blog. https://blog.chromium.org/2018/10/trustworthy-
chrome-extensions-by-default.html

[27] Daniel Hausknecht, Jonas Magazinius, and Andrei Sabelfeld. 2015. May I?-
Content Security Policy endorsement for browser extensions. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.

[28] IETF. 2012. HTTP Strict Transport Security (HSTS). https://tools.ietf.org/html/
rfc6797

[29] IETF. 2013. HTTP Header Field X-Frame-Options. https://tools.ietf.org/rfc/rfc7034
[30] IETF. 2016. Initial Assignment for the Content Security Policy Directives Registry.

https://tools.ietf.org/html/rfc7762
[31] Apple Inc. 2022. Converting a Web Extension for Safari. https:

//developer.apple.com/documentation/safariservices/safari_web_extensions/

converting_a_web_extension_for_safari
[32] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels

Provos, Moheeb Abu Rajab, and Kurt Thomas. 2015. Trends and lessons from
three years fighting malicious extensions. In USENIX Security.

[33] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. 2014. Hulk: Elicitingmalicious behavior in browser
extensions. In USENIX Security.

[34] Ravie Lakshmanan. 2021. Over a Dozen Chrome Extensions Caught Hijacking
Google Search Results for Millions. https://thehackernews.com/2021/02/over-
dozen-chrome-extensions-caught.html. Accessed on 2021-04-27.

[35] Microsoft. 2022. Overview and timelines for migrating to Manifest
V3. https://docs.microsoft.com/en-us/microsoft-edge/extensions-chromium/
developer-guide/manifest-v3

[36] Mozilla. 2021. mozilla/web-ext. https://github.com/mozilla/web-ext
[37] Mozilla Add-ons Community Blog. 2019. Add-on Policy and Process Updates. https:

//blog.mozilla.org/addons/2019/05/02/add-on-policy-and-process-updates/
[38] Mozilla Developer Network. 2012. XMLHttpRequest. https://developer.mozilla.

org/en-US/docs/Web/API/XMLHttpRequest
[39] Mozilla Developer Network. 2021. Cross-Origin-Embedder-Policy.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-
Embedder-Policy

[40] Mozilla Developer Network. 2021. Cross-Origin-Opener-Policy. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy

[41] Mozilla Developer Network. 2021. Cross-Origin-Resource-Policy. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)

[42] Mozilla Developer Network. 2021. Cross-Origin Resource Sharing (CORS). https:
//developer.mozilla.org/en-US/docs/Web/HTTP/CORS

[43] Mozilla Developer Network. 2021. Referrer-Policy. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

[44] Mozilla Developer Network. 2022. Manifest v3 in Firefox: Recap & Next
Steps. https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-
next-steps/

[45] Mozilla Developer Network. 2022. Sitemap - Firefox Extensions. https://addons.
mozilla.org/api/v5/addons/search/?app=firefox&type=extension

[46] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vi-
gna. 2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device
Fingerprinting. In IEEE S&P.

[47] Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020. You’ve
Changed: Detecting Malicious Browser Extensions through Their Update Deltas.
In ACM CCS.

[48] Raffaello Perrotta and Feng Hao. 2018. Botnet in the browser: Understanding
threats caused by malicious browser extensions. In IEEE S&P.

[49] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies.. In NDSS.

[50] Sebastian Roth, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti, and Ben Stock.
2022. The Security Lottery: Measuring Client-Side Web Security Inconsistencies.
In USENIX Security.

[51] Konstantinos Solomos, Panagiotis Ilia, Soroush Karami, Nick Nikiforakis, and
Jason Polakis. 2022. The Dangers of Human Touch: Fingerprinting Browser
Extensions through User Actions. In USENIX Security.

[52] Dolière Francis Somé. 2019. Empoweb: empowering web applications with
browser extensions. In IEEE S&P.

[53] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2020. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. In
NDSS.

[54] Microsoft Edge Support. 2021. Add, turn off, or remove extensions in Microsoft
Edge. https://support.microsoft.com/en-us/microsoft-edge/add-turn-off-or-
remove-extensions-in-microsoft-edge-9c0ec68c-2fbc-2f2c-9ff0-bdc76f46b026

[55] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon Mccoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels
Provos, and Moheeb Abu Rajab. 2015. Ad Injection at Scale: Assessing Deceptive
Advertisement Modifications. In IEEE S&P.

[56] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. 2019. Everyone is different: Client-side diversification for defending
against extension fingerprinting. In USENIX Security.

[57] W3C. 2017. Referrer Policy. https://www.w3.org/TR/referrer-policy/
[58] W3C. 2020. Permissions Policy. https://www.w3.org/TR/permissions-policy-1/
[59] W3C. 2021. Fetch Metadata Request Headers. https://www.w3.org/TR/fetch-

metadata/
[60] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto

Perdisci, andWenke Lee. 2015. UnderstandingMalvertising ThroughAd-Injecting
Browser Extensions. In WWW.

https://github.com/shubh401/black_canary.git
https://swag.cispa.saarland/default/2021/07/19/madweb-headers.html
https://blogs.opera.com/tips-and-tricks/2021/10/using-addons-from-chrome-in-opera/
https://blogs.opera.com/tips-and-tricks/2021/10/using-addons-from-chrome-in-opera/
https://github.com/mallorybowes/chrome-mal-ids
https://github.com/mallorybowes/chrome-mal-ids
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/#host-permissions
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/#host-permissions
https://developer.chrome.com/docs/extensions/mv3/match_patterns/
https://developer.chrome.com/docs/extensions/mv3/match_patterns/
https://developer.chrome.com/extensions/activeTab
https://developer.chrome.com/extensions/activeTab
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/match_patterns
https://3-72-0-dot-chrome-apps-doc.appspot.com/extensions/declarativeNetRequest#method-updateDynamicRules
https://3-72-0-dot-chrome-apps-doc.appspot.com/extensions/declarativeNetRequest#method-updateDynamicRules
https://developers.google.com/web/tools/puppeteer
https://developers.google.com/web/tools/puppeteer
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://chrome.google.com/webstore/sitemap
https://chrome.google.com/webstore/sitemap
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/veJy9uAwS00/m/9iKaX5giAQAJ
https://groups.google.com/a/chromium.org/g/chromium-extensions/c/veJy9uAwS00/m/9iKaX5giAQAJ
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/rfc/rfc7034
https://tools.ietf.org/html/rfc7762
https://developer.apple.com/documentation/safariservices/safari_web_extensions/converting_a_web_extension_for_safari
https://developer.apple.com/documentation/safariservices/safari_web_extensions/converting_a_web_extension_for_safari
https://developer.apple.com/documentation/safariservices/safari_web_extensions/converting_a_web_extension_for_safari
https://thehackernews.com/2021/02/over-dozen-chrome-extensions-caught.html
https://thehackernews.com/2021/02/over-dozen-chrome-extensions-caught.html
https://docs.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://docs.microsoft.com/en-us/microsoft-edge/extensions-chromium/developer-guide/manifest-v3
https://github.com/mozilla/web-ext
https://blog.mozilla.org/addons/2019/05/02/add-on-policy-and-process-updates/
https://blog.mozilla.org/addons/2019/05/02/add-on-policy-and-process-updates/
https://developer.mozilla.org/en-US/docs/Web/API/XMLH ttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLH ttpRequest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://blog.mozilla.org/addons/2022/05/18/manifest-v3-in-firefox-recap-next-steps/
https://addons.mozilla.org/api/v5/addons/search/?app=firefox&type=extension
https://addons.mozilla.org/api/v5/addons/search/?app=firefox&type=extension
https://support.microsoft.com/en-us/microsoft-edge/add-turn-off-or-remove-extensions-in-microsoft-edge-9c0ec68c-2fbc-2f2c-9ff0-bdc76f46b026
https://support.microsoft.com/en-us/microsoft-edge/add-turn-off-or-remove-extensions-in-microsoft-edge-9c0ec68c-2fbc-2f2c-9ff0-bdc76f46b026
https://www.w3.org/TR/referrer-policy/
https://www.w3.org/TR/permissions-policy-1/
https://www.w3.org/TR/fetch-metadata/
https://www.w3.org/TR/fetch-metadata/

A EXTENSION INSTRUMENTION &
CONTENT-SECURITY-POLICY

We check for the existence of a content_security_policy defini-
tion within the manifest. This is necessary as the framework relies
on XMLHttpRequests [38] to forward the recorded set of headers to
our logging server for post-processing and analysis. The extension’s
CSP potentially governs such interactions. If not specified, this de-
faults to script-src ’self’; object-src ’self’. Since XHRs
are governed by connect-src (or the fallback default-src), we
can omit any rewriting in case of the default policy. For any other
policy, we first determine if either connect-src or default-src is
specified by parsing the CSP as JSON. When connect-src is speci-
fied, we append the source expression http://localhost server,
where we collect all the header data. In case only, default-src is
specified. we define connect-src directive in the policy with our
server address. This is because default-src serves as a fallback
directive for other directives, and simply adding the server address
to its values means we modify the policy beyond our needs.

B EXAMPLE OF UNSAFE CSP POLICY
INJECTIONS

default-src https:; script-src https: 'unsafe-inline'
'unsafe-eval' blob: 'unsafe-inline'; style-src
https: 'unsafe-inline'; ... base-uri
https://*.gracenote.com

↩→

↩→

↩→

Listing 3: Trivially bypassable CSP injected by 3 extensions
on theguardian.com.

C SECURITY IMPACT OF ALTERATIONS
We continue the discussion on the impact of alterations among
individual security headers from Section 6 here.

Origin & Referer. We found 263 extensions that injected either of the
two headers. 26 extensions modified the Origin while 57 modified
the referer. One of them also modified the origin to chrome-
extension://*, as if the extension initiated the request. Further, 29
extensions entirely dropped the two headers. Any alteration to these
header values may harm the applications’ security if the server-side
processes the request differently based on their availability and set
values, e.g., filtering cross-origin requests.

FetchMetadata. Four extensions injected the Sec-Fetch-Dest header
set to document, indicating that it is a user-initiated top-level nav-
igation request. One other extension injected this, set to empty,
which is rather harmless. 11 extensions modified the existing non-
document header value (e.g. iframe, script and style) to document.
One extension dropped the Sec-Fetch-User header, and the other
two injected this, indicating that the request is user-initiated. Al-
tering these headers may cause security issues if the server-side
processes the request differently based on this header, e.g., block-
ing non-user-initiated requests or certain unexpected requests. For
Sec-Fetch-Mode, nine extensions injected this header with value
either set to cors or navigate. Only one of them dropped this header.

One extension modified every existing header value with navigate,
indicating user-initiated navigation to the server, which could also
cause security concerns when handled differently. Lastly, for Sec-
Fetch-Site, we found five extensions injecting this header, set to none,
whereas ten other extensions injected the header set to same-origin.
Only one of them dropped this header. Notably, ten extensions
modified the existing header value by setting it to none, which may
be potentially unsafe as it indicates a user-initiated request. Further,
two of them set the current header value to same-site and the other
two set this to same-origin. Any of the modifications mentioned
above can have a negative security impact if the server-side refers
to these headers before processing the requests, e.g., filtering out
cross-site requests or limiting cross-origin requests.

HSTS. 13 extensions dropped the HSTS header on 156 domains, the
security impact of which depends on the presence of the affected
domains in the preload list. 85/156 domains also sent includeSub-
domains while 57 of them included preload as well. Six other
extensions only made syntactic changes to HSTS, causing no secu-
rity impact, while two of them added includeSubdomains to HSTS
sent by tmall.com, potentially enforcing security. Notably, one of
them stripped preload from HSTS on two domains. This will not
have any impact if the domains are already on the preload list.

COOP, COEP, CORP. We observe that one extension injects the
COOP set to same-origin, enforcing cross-origin isolation across
multiple windows. On the contrary, four others dropped this header
while one of them also modified the value from same-origin-allow-
popups to unsafe-none, thus, disabling the desired isolation on the
client-side. For COEP, one extension injected this with require-corp
value, intended to restrict cross-origin resources. However, this
might break certain functionalities if the cross-origin resources do
not include corresponding policies. Two other extensions dropped
this header, disabling the cross-origin restrictions on embedded
resources. Lastly, for the CORP header, two extensions injected this
with the value set to cross-origin, meaning there is no restriction
enforced on cross-origin resources. Six of them also dropped this
header. While dropping this may not have a security impact, it may
still block cross-origin resources if the embedding page sets the
COEP header or the target resource is not CORS-configured.

Set-Cookie. We found nine extensions that injected the Set-Cookie
header on 372 domains. Four of these always set cookies with same-
site=none attribute while five of them set samesite to strict or
lax only in 15 altered instances. This could potentially allow track-
ers to identify users online. Nine other extensions dropped this
header, which is harmless from a security viewpoint. 22 exten-
sions also modified the existing header values. These modifications
range from altering security attributes (e.g. samesite, secure, etc.) to
modifying cookie values. Altering the existing Set-cookie header
may lead to potential issues on the client-side as it may serve as a
potential tracking vector if not configured properly or even leak
privacy-sensitive information.

X-Content-Type-Options. Two extensions injected this header, en-
forcing protection againstMIME-type sniffing vulnerabilities.While
ten of them dropped this header, and one of themmodified the exist-
ing header value by setting it to a non-standard value, thus disabling
the security restrictions.

chrome-extension://*
chrome-extension://*
tmall.com

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Security-related Response Headers
	2.2 Security-related Request Headers
	2.3 Extension Architecture
	2.4 Related Work

	3 Research Methodology
	3.1 Extension Analysis
	3.2 Extension Instrumentation
	3.3 URL Scheduling & Header Collection
	3.4 Detecting Potentially Harmful Extensions

	4 Chrome Extension Analysis
	4.1 Permissions & Source Code Analysis
	4.2 Instrumentation Analysis
	4.3 Results and Overall Impact
	4.4 Temporal Evolution

	5 Disclosure & Necessity for Modifications
	6 Security Impact of Alterations
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Extension Instrumention & Content-Security-Policy
	B Example of Unsafe CSP Policy Injections
	C Security Impact of Alterations

