
“I have no idea how to make it safer”:
Studying Security and Privacy Mindsets of Browser Extension Developers

Shubham Agarwal, Rafael Mrowczynski, Maria Hellenthal, Ben Stock

CISPA Helmholtz Center for Information Security, Saarbruecken, Germany
{shubham.agarwal, mrowczynski, hellenthal, stock}@cispa.de

Abstract
Browser extensions play a vital role in the Web ecosystem:
they enable users to customize their experience while brows-
ing. However, the higher privileges of extensions compared to
the Web applications require in-depth security considerations
to not threaten the security and privacy (S&P) of their users;
the security and privacy mindset of developers has not been
studied yet, though. In this paper, we close this research gap.

To that end, we conducted a qualitative study with exten-
sion developers from diverse backgrounds and experience
levels (N=21) to identify the root causes for vulnerable ex-
tensions existing in the ecosystem. Our findings suggest that
developers often implicitly acknowledge the S&P risks as-
sociated with their extensions, but they frequently lack the
necessary knowledge and resources to implement effective
security and privacy-protecting mechanisms. Additionally,
socio-technical barriers, such as insufficient incentives and
external pressures, including platform-imposed restrictions,
further hinder secure development practices. Based on our
findings, we offer empirically grounded takeaways for the
browser extension ecosystem to help strengthen security prac-
tices and ultimately provide better protection for users.

1 Introduction

Web browsers have made significant advances to allow users
to customize their experience. Browser extensions, or add-
ons, are a prime example of this customization. Much like
their historical predecessors, the ActiveX plugins and the book-
marklets [15, 56], these extensions, quite literally, extend the
native capabilities of browsers and offer a diverse range of
functionalities to users. Today, they are integral to the average
user’s browsing experience, with everyday utility (such as
password management or ad blocking) and widespread adop-
tion across platforms [97]. Thus, browser extensions today
have a large user base across different Web platforms. How-
ever, their popularity has also attracted digital miscreants,
exploiting extensions for nefarious intentions.

The research community, penetration testers, and security
enthusiasts have extensively investigated browser extensions
over the last decade. They reported numerous critical S&P
issues with browser extension [33, 72, 79]. Much of the early
investigations gravitated around the overtly malicious intent
of extension developers [5, 43, 44, 73] which was followed
by strict measures and architectural changes by browsers to
enhance the overall security of the ecosystem [18, 64]. How-
ever, recent findings have also shown that even harmless ex-
tensions could be abused by malicious actors on the Web
through various overt or covert channels. The attacks on ex-
tensions could range from exploiting code vulnerabilities
to perform Universal Cross-Site Scripting (UXSS), to data
theft, to tracking users online, and so on [17, 53, 84, 85]. Un-
fortunately, many of these exploitable vulnerabilities in the
extension could be an inadvertent coding mistake or even
desired behavior of the extension; however, they are exposed
to malicious actors due to the inherent architectural limita-
tions [4]. This is further complicated by the fact that browser
vendors may differ in terms of extension support and API
(in-)compatibilities [24, 66]. Last but not least, the extension
also needs to be feature-rich to meet users’ expectations.

To date, while research has focused on detecting benign-
but-buggy extensions and developing understanding in other
contexts, the community misses an analysis of browser ex-
tension developers’ S&P mindsets [95, 100]. In this study,
we close this gap in the literature. Concretely, we perform a
semi-structured interviews with extension developers (N=21)
to assess the S&P awareness through two coding tasks and
additional interview questions on security mindsets and past
experiences with the extension ecosystem.

Our findings highlight that developers often implicitly con-
sider the S&P aspects of their extensions’ behavior; however,
they lack sufficient knowledge to implement corresponding
mechanisms. Additionally, socio-technical drivers, such as
monetary incentives (or lack thereof), and ecosystemic and ex-
trinsic influences, such as platforms’ restrictions and business
goals, may also influence the development style and pattern.

To summarize, we answer the following research questions:

RQ1 What is the security and privacy mindset of extension
developers?

RQ2 What do extension developers regard as threats, and
how do they model these threats in their own extension?

RQ3 What are the critical factors and roadblocks that influ-
ence extension development practices?

2 Technical Background

We first outline the relevant background topics on the exten-
sion ecosystem, their components, and the publishing process.

Extension Architecture & Distribution: Browser exten-
sions are client-side add-ons that users install to get additional
features while surfing the Web. Currently, there are two pop-
ular extension marketplaces, the Chrome Web Store (CWS)
for all chromium-based browsers and the Mozilla Add-ons
Store (AMO) for the Firefox family of browsers. Their users
can access and install extensions [36, 66] from there. While
Microsoft Edge and Opera also have their own extensions
marketplace, their users can nevertheless install extensions
from the CWS, along with Brave and Arc, since they are all
Chromium-based browsers. Thus, the CWS currently holds
the largest market share in the extension ecosystem. Although
there are minor differences between how the two extension
stores operate, the underlying architecture and development
process are very similar since they adhere to the common We-
bExtensions API standards [97].

Extension Components: Browser extensions, in essence,
contain three main components: the extension core, the con-
tent scripts, and the interactive UI pop-ups [25]. The exten-
sion core is an isolated and highly privileged component that
runs in the background (as service workers). It can access the
privileged chrome APIs and includes page-agnostic function-
alities. Content script(s) are less privileged and can interact
with the DOM of the visited Web page, enabling page-related
features of the extension. The extension may also inject a
script directly into the context and the JavaScript namespace
of the visited page from the extension core using the privi-
leged scripting APIs. The UI pop-ups enable users to interact
and configure the behaviors of their extensions defined by the
developers. The extension package also has a manifest file
that contains the metadata of the extension itself: all the API
and host permissions that the developer requests, the list of
scripts, stylesheets, and other resources that it includes, and
the description of the extension shown to the user at install-
time [19]. Extension components can communicate with each
other or with other extensions through dedicated channels,
such as exchanging postMessages.

Browser vendors take proactive measures to mitigate
against existing threats in the extension ecosystem. Google
launched the latest extension standards in 2021, called MV3,
to boost the security and performance of the extensions over-
all [24]. However, the MV3-driven changes and the transition
process have stirred controversies among developers as they

also restrict the desired extensions’ capabilities (e.g., depreca-
tion of the webRequestBlocking API used by ad blockers).

Publishing process: Given the highly privileged nature
of browser extensions and the range of sensitive operations
they can perform, a regulatory system is essential to restrict
malicious and vulnerable extensions in the ecosystem. Hence,
every extension published on the store goes through a review
process [20, 65]: When an extension developer decides to
publish their extension on any of the stores, they first need
to submit their extension along with additional information
about the technical and non-technical aspects of their exten-
sions to the platform for review. The browser vendors may ask
the extension developer to make further changes to comply
with their review standards [21, 68]. The review process is
a black box, and the browser vendors have not documented
the underlying technical details. We assume this to be inten-
tional to avoid any bypass by malicious extension develop-
ers [22, 63]. This way, every extension published on the store
goes through a detailed scrutiny when submitted for the first
time and may undergo additional periodic vetting while they
are available on the store.

Client-side Storage: Web applications have access to dif-
ferent client-side storage APIs, such as the Web Storage APIs
and the IndexedDB API, that enable them to store origin-
isolated and persistent data in the browser [58]. Browser ex-
tensions can utilize these storage APIs to store or retrieve data
through JavaScript since the extension JavaScript (e.g., con-
tent script or page-injected JavaScript) also executes in the
page context. In addition, extensions also have dedicated ac-
cess to a privacy-friendly storage API [57]. The storage API
is not accessible to Web applications and is even extension-
isolated, i.e., an extension can only read data stored by itself
and not by other extensions.

Security-related HTTP Headers Web application
servers deploy various HTTP response headers [71],
such as Content-Security-Policy (CSP) [59] and
X-Frame-Options (XFO) [62], to instruct the browser about
the desired security restrictions they wish to enforce on the
client side. For instance, a Web server may send an XFO
header with SAMEORIGIN value to deny any framing attempts
by cross-origin applications. Unfortunately, extensions may
find these strict security restrictions interfering with or block-
ing their intended functionality on the client side. However,
tampering with these headers may also inadvertently expose
the corresponding Web application to client side vulnerabili-
ties (e.g., cross-site scripting, clickjacking, etc.) [39].

3 Related Work

In this section, we discuss various research studies related to
our work that highlight the S&P issues with browser exten-
sions. We also refer to other related developer-centric studies
focused on the security and privacy mindsets of software
developers since they also inspired our study design.

3.1 Research on Browser Extensions

Prior studies in this field primarily focused on either of the
two behavioral aspects in terms of security and privacy: mali-
cious or benign-but-buggy extensions. We focus our attention
primarily on the benign-but-buggy extensions in this study.

Vulnerable Extensions: Researchers have also empha-
sized the fact that even benign-but-buggy extensions could in-
advertently expose their users to client side security issues or
allow nefarious actors to access privacy-sensitive data. For in-
stance, as early as 2010, Barth et al. [9] showed that extensions
are often over-privileged, posing grave security and privacy
risks to the users, arguing in favor of enforcing isolation, priv-
ilege separation, and the principle of least privilege. Carlini
et al. [14] manually reviewed extensions and reported a large
number of vulnerabilities that could be abused by malicious
websites to attack them. Further, Somé [85] and Fass et al.
[30] conducted a large-scale analysis of extensions and identi-
fied vulnerable cases where malicious websites could exploit
the buggy communication channels of these extensions to ex-
ecute code in the privileged context, leading to universal-XSS
or sensitive data exfiltration. Similarly, Eriksson et al. [29]
highlighted that extensions could be subject to being attacked
by other installed extensions, leading to XSS when poorly
implemented. Yu et al. [101] built a static analysis framework
utilizing the abstract interpretation of the extension code to de-
tect vulnerable endpoints. Starov and Nikiforakis [88] added
that while extensions often leak privacy-sensitive data, most
happen accidentally due to poor implementation. A long tail
of work on extension fingerprinting also makes clear that they
present an additional surface for online trackers to indirectly
track users through the extensions’ observable set of actions
on the client side [4, 45, 46, 51, 80, 81, 82, 83, 84, 89, 90, 95].
Lee and Kim [53] investigated the extension architecture and
argued that a compromised renderer process of the browser
might allow a malicious website to bypass the isolation mech-
anism and execute unauthenticated code or exfiltrate sensitive
data. Orthogonally, Bui et al. [12] analyzed the privacy poli-
cies of Chrome extensions against their runtime behavior and
reported inconsistencies among their data collection practices.

In this study, we uncover the fundamental factors behind
such benign-but-buggy implementations by extension devel-
opers and their knowledge on associated threats.

Human-centered Extension Studies: Kariryaa et al. [47]
inquired about the S&P-focused mental model of extension
users through an online survey. They reported that users are
not fully aware of the potential of browser extensions and their
S&P implications and, instead, trust the developers to handle
such issues. Orthogonally, Nisenoff et al. [70] performed an
extensive study and built a taxonomy of breakages incurred by
ad-blocking and anti-tracking extensions by analyzing store
reviews and GitHub reviews along with interviewing exten-
sion users. Whereas, Roongta and Greenstadt [74] proposed
revised benchmarking metrics to address usability concerns

of privacy-preserving browser extensions.
In contrast, our study addresses the research gap by under-

standing the developers’ S&P mindset and their considera-
tions while developing and publishing extensions.

3.2 Developer-centered Security Studies

Security researchers have investigated the S&P-knowledge
and the development style of Web developers using either
qualitative or quantitative methods or both in the past. Roth
et al. [75] performed a qualitative study with Web developers
to understand the root cause for misconfigured CSP policies
deployed by websites. They interviewed 12 Web developers
and asked them to work on a CSP-related coding task and
explain the associated threat model through a drawing board.
As a result, they reported an apparent lack of knowledge, mis-
aligned expectations, and incentives for Web developers to use
CSP. In a follow-up study, Roth et al. [76] also investigated
the roadblocks for deploying secure sanitizers required for
the newly introduced Trusted Types API by applying similar
methods. This study with 13 Web developers revealed that
the impact of misleading information sources, in combination
with the complexity of the mechanism and incorrect under-
standing, leads to deploying trivially bypassable sanitizers.

More generally, Gorski et al. [37] conducted an online ex-
periment with 53 Python developers to identify and address
insecure usage of cryptographic APIs to improve code se-
curity. They found that API-integrated security advice tools,
when placed close to the development environment, are ef-
fective in curbing API misuse and insecure design choices.
In an orthogonal direction, Fischer et al. [31] conducted a
quantitative study on the security-related code snippets avail-
able on ∼4K Stack Overflow posts and their usage in 1.3M
Android applications to understand the prevalence of copy-
pasted code in Android ecosystem. They reported over 15%
of all Android applications to use one or more code snippets
from these posts, where 97% of them were insecure. Naiak-
shina et al. [69] conducted a mixed-methods study with 43
freelance developers to understand their password storage
strategy. They uncovered weaknesses in the secure storage
strategy and a false sense of awareness (e.g., using base64 to
"encrypt") that developers may often have. Recently, Serafini
et al. [78] performed a literature review of the research stud-
ies using qualitative or quantitative methods from selected
conferences to identify the hurdles in recruiting candidates
for security studies. Through their findings, they advocated
for increased sample size and compensation, using reliable
recruitment channels and transparency for recruitment.

Our work is orthogonal to prior work in the space by explic-
itly focusing on developers of extensions, for which security
issues affect not just a single site or sites relying on specific
third-party components, instead, could unknowingly affect
every website the user visits.

Figure 1: Summary of the overall steps of our study procedure.

4 Methods

Our study aims to understand the overall S&P mindset of ex-
tension developers and their specific courses of action while
programming browser extensions. The latter should demon-
strate how developers exercise (or do not exercise) knowledge
relevant to the security and privacy of extensions in their
programming practices. Hence, our research design aimed
at the analysis of empirical data collected through (1) the
video-recorded observation of developers’ programming be-
havior in combination with (2) more general statements about
their S&P-relevant knowledge, mindset, and biographic back-
ground elicited in semi-structured interview setting. These
general factors (2) cannot be directly observed during coding
tasks; they must be asked. Hence, we developed a qualita-
tive interviewing strategy that combined a semi-structured
interview with video-recorded coding tasks, with the latter
embedded within the former. The coding task served as the
primary focus of our data analysis, which was then comple-
mented by findings from the interview data. Figure 1 describes
the overall steps in our study procedure.

The interviews lasted, on average, 120 minutes and were
conducted via Zoom between July and November 2024. As
compensation, we offered all interview participants an Ama-
zon Gift Card worth $50 (or its equivalent). Further, the re-
sponsible ERB for our institution reviewed and approved our
study procedure (refer to Section 7 for a detailed description
of our ethical considerations).

To verify the feasibility of our methods, we conducted five
pilot interviews before recruiting the actual extension develop-
ers (we excluded these interviews from our analysis). These
tests enabled us to refine the coding tasks by adding com-
ments and improving task instructions to reduce unnecessary
cognitive burden for participants. It also highlighted the need
to reduce the overall complexity of the tasks, which is why
we removed one of the originally considered tasks. For more
information on the rationale, please refer to Appendix A of
the supplementary material [3].

4.1 Semi-structured Interview
To gather data needed for answering our research questions,
we conducted semi-structured interviews [38, 52]. For this
purpose, we designed an interview guide that focused on the
following topical areas: 1) developer’s background and ex-
perience, including their purpose and their motivation for
developing browser extensions; 2) their programming and
publishing practices including their general approach to ex-
tension development, key considerations, and guidelines they
follow during the process; and 3) their S&P mindset covering
their general S&P awareness, their specific S&P considera-
tions during development, and the roadblocks they face in the
process (refer to the repository for the Interview guide [3]).

The coding tasks (explained in Section 4.2) were strategi-
cally placed between topical areas 2 and 3. This arrangement
ensured that questions about developers’ S&P mindset (3)
would not influence their performance on the programming
tasks. Once participants completed these tasks, and before
we continued with topical area 3) of the interview, we further
asked follow-up questions about participants’ programming
decisions and activities during the tasks and additional steps
they would consider necessary to publish the coding task ex-
tensions. In the last phase of the interview, we also inquired
about their perception and experience of transitioning to MV3
standards, in case the participant did not mention this already.

4.2 Coding Tasks
The second stage of our interview required participants to
work on two consecutive coding tasks implicitly focused on
their security and privacy mindset. For this, we created a mock
e-commerce website. Participants were tasked with working
on the extensions that enabled additional features on this
website. Notably, the website did not include any actual logic
to place orders or send data to our servers. It only contained
the pages and HTML forms absolutely necessary to facilitate
the coding tasks. Participants were then provided with task
descriptions and corresponding boilerplate code.

Due to the nature of the tasks and the varying levels of
expertise among participants, we explicitly informed all par-
ticipants that, while they were encouraged to complete the
coding tasks, this was not strictly required. They were allowed
to verbally outline their approach in as much detail as possi-
ble in case they ran out of time, although we did not impose
an explicit time limit. We believe this approach aligned with
our research questions and provided an acceptable trade-off,
as our primary goal was to understand the S&P mindset and
practices that developers followed, along with their reasoning,
rather than focusing on the exact lines of code.

At the beginning of this interview phase, we provided par-
ticipants with a link to the artifact [3], which included a PDF
with all the necessary information to complete the tasks and
the extension folders corresponding to each task. The ex-
tension contained the necessary code (e.g., DOM interac-
tions code, stylesheets, etc.), unrelated to the core of the task
and was labeled accordingly for clarity. Participants were
allowed to ask the questions and seek help from online re-
sources or platforms, as they typically do when working on
their extensions. Importantly, we explicitly asked participants
to verbalize their thoughts and consider a browser-agnostic,
publication-ready extension while outlining their approach.

Next, we explain the rationale behind selecting individual
coding tasks and describe their structure and design.

Coding Task 1: Save Address For Later

Researchers and practitioners have repeatedly demonstrated
that malicious websites could compromise browser extensions
to steal privacy-sensitive data. Lee and Kim [53] showed that
a compromised browser renderer could allow a malicious
actor to steal all the extension-stored data and argued that
extensions should not store privacy-sensitive information on
the client side. This is in line with the recommendations put
forth by Chrome and the Mozilla Developer documentation
[23, 57]. Agarwal et al. [4] reported that many extensions still
use the traditional Web Storage APIs instead of the dedicated
chrome.storage APIs for the extensions to store data and
showed that this behavior could be reliably used to fingerprint
the existence of an extension. Recently, Solomos et al. [84]
affirmed that extension-stored data could be abused to detect
their presence on the client side. Hsu et al. [42] also reported
the storage to be the widely-used permissions by all classes
of extensions. We modeled the prevalence of the data storage
behavior among extensions and the associated privacy threat
highlighted by these studies in our first coding task.

In line with these considerations, Coding Task 1 required
participants to enable a "Save Address for Later" feature on
the website through an extension. The feature was intended
to allow users to "record" and "retrieve" their address data
when ordering any product from the provided website, but it
lacked this basic feature. Given that the address data could be,
at the very least, classified as semi-sensitive, we believe that

handling such cases through extensions is a privacy-sensitive
action, and developers should be equipped to handle it appro-
priately. Thus, we designed this task to capture the developers’
privacy awareness and to determine the set of actions along
with their underlying explanations. The extension scripts al-
ready contained the code for DOM interactions and extract/-
fill the HTML form. Participants were only required to store
and retrieve the data based on their preference and choice of
API(s) (as in Listing 1 in the supplementary material [3]).

Coding Task 2: Check prices on Amazon

Contrary to the first coding task, the second task focused
on their security-relevant decisions. Prior studies on browser
extensions reported that malicious extensions often tamper
with security-related HTTP headers to bypass security re-
strictions on the client side to execute untrusted JavaScript
or perform clickjacking attacks, for instance [43, 44]. Con-
trastingly, Hausknecht et al. [41], and later, Agarwal [2]
reported that even benign browser extensions often mod-
ify or even drop security-related HTTP headers, such as
Content-Security-Policy (CSP) and X-Frame-Options
(XFO), that may interfere with their client-side functionality
and are benign in nature. For instance, an extension may mod-
ify or drop an all-blocking CSP header to inject and execute
its JavaScript in the page’s context. Similarly, extensions may
have to alter XFO if they wish to embed a Web page in an
iframe that does not allow cross-origin framing. Naturally,
modifying HTTP headers may have unwanted consequences
if not handled cautiously. Since both malicious and benign
extensions may exhibit similar header-modifying behavior on
arbitrary domains, it is infeasible to discern their intent and
take down the corresponding extensions proactively. In such
cases, the extension developers must consider the security im-
plications of their functionality and the header-modification
strategy. Coding Task 2 aimed at understanding the generic
security mindset of the extension developers. It used HTTP
header modifications as a focal point, given that this behavior
is exhibited by both malicious and benign extensions alike.

In Coding Task 2, participants were required to enable
the "Check Price on Amazon" feature for the users of the
e-commerce website such that they would be able to com-
pare the discounted price on the website against the price
listed on Amazon. To achieve this, the extension should add a
button for each product in the DOM, which should open the
amazon.com domain inside an iframe overlay. The iframe
overlay contacted the publicly available Amazon search end-
point and passed the corresponding book title as the search
query here, which was then supposed to be loaded inside
the iframe [7]. The extension scripts already included the
code to add the button on the UI, contact the search endpoint
with an appropriate query, and the overlay to show the re-
sult. However, the iframe did not successfully load due to the
X-Frame-Options header deployed by the website, which

amazon.com

restricted any cross-origin attempt to load the page within an
iframe. The goal of the task was to provide a security-aware
solution that allowed the iframe to load as expected. Essen-
tially, participants needed to deal with the response headers
here to enable the desired feature, however, only as per MV3.

CT-Independent Additional Hidden Flags

While the above two coding tasks capture the S&P mindset
through specific tasks and functionalities, acting as an anchor
point, there are certain development patterns that apply to all
kinds of extensions. From a security standpoint, API and host
permissions of browser extensions could pose threats when
not specified adequately. Many studies have reported privi-
lege escalation attacks on extensions [29, 30, 53], while the
extension stores also strongly recommend developers to apply
the Principle of Least Privilege to avert any exploitation at-
tempts [20, 65]. Hence, we also inquired about the developers’
knowledge of permissions in our coding tasks.

Specifically, we intentionally included redundant API per-
missions and set the host permissions of the content script
and the web-accessible resources to <all_urls> in the
manifest for each extension. Additionally, we also added the
all_frames primitive for the content script set to true and
the use_dynamic_url primitive set to false to capture the
participants’ awareness and knowledge on these primitives.
The all_frames key (dis-)allowed the content script to be
injected into all the iframes of the parent page while the
use_dynamic_url key was used to configure whether the
extension identifier is static or rotated for each session. A
static extension identifier exposes itself to WAR-based exten-
sion fingerprinting [45, 80, 81]. Importantly, these redundant
configurations are task-agnostic and do not affect the outcome
of the solution of the two coding tasks above. Towards the end
of the coding tasks, we explicitly asked the participants if they
would like to make any changes whatsoever in the manifest
to hypothetically publish this extension today. This supple-
mented our understanding of the development and publishing
practices against their actions and observations here.

4.3 Sampling & Recruitment

We reached out to browser extension developers who had
published at least one extension that was live on either of
the two largest extension distribution stores (CWS & AMO)
at the time the study was conducted. Hence, we collected
the publicly available details of the developers and their ex-
tensions from the respective distribution stores through the
sitemap of the stores [26, 67]. We then applied specific selec-
tion criteria to filter the developers and discarded those that
did not fulfill the following fundamental factors - i.) they had
to have published or updated one of their extensions since 1st

January 2020, and, ii.) they had to have a valid email address.
Many extensions on these stores had been first published as

early as 2011 and had not been updated since. We assumed
it was more meaningful to gather insights from developers
who actively contributed recently. This ensured that the se-
lected participants were likely to be aware of current security
concepts and practices, aligning with our study’s goals.

From the selected pool of candidate developers, we ran-
domly chose 2,500 Chrome and 1,000 Mozilla extension de-
velopers separately for each store and sent email invites to
participate in our study. The email invites included details
on the study’s background, its goal, and how we identified
participants to establish the legitimacy of the sender and the
email. The email also contained the link to a pre-screening
questionnaire allowing participants to sign up for the inter-
view study [3]. The questionnaire itself consisted of a total
of ten questions that inquired about the technical experience,
their educational and professional background, and their de-
mographic information. Extension-related questions included
the developers’ years of experience with extensions, the cate-
gories of extensions developed (as visible on the stores), and
the underlying motivation. Last, we asked them to provide
their email address to schedule interviews (refer to Appendix
B in the supplementary material [3] for more details).

Following the sampling principle of maximal structural
variation [48], we then used the answers to these questions to
identify developers with varying levels of expertise, motiva-
tions, and categories of extensions they had developed [54].

While reviewing the data from the pre-screening survey of
participants who expressed interest in our study, we observed
that the majority of responses came from developers who
had published only one extensions with small user bases (10
users), and primarily as a leisure activity. Indeed, based on
the statistics collected from the distribution stores, we found
that only 1% (99th percentile) of all the published extensions
have more than 10K users. Similarly, only 1% of all the de-
velopers have published more than 7 extensions. However, to
adequately address our research questions, we deemed it nec-
essary to also interview participants with larger user bases or
having published multiple extensions, as their S&P mindsets
might differ significantly from those creating extensions as a
leisure activity. To ensure diversity in extension visibility and
user base, which is critical for the validity of our results, we de-
cided to supplement our initial sampling strategy by reaching
out to popular developers in subsequent recruitment batches.
To achieve this, we identified developers with at least one
published extension having more than 10,000 users or those
who have developed at least 7 extensions and exclusively sent
email invitations to these developers.

4.4 Qualitative Data Analysis

As a result of our general interviewing strategy, each full-
fledged interview yielded two complementary types of data:
(1) an audio recording of the entire interview, which we trans-
formed later into a written interview transcript by using our

institution’s internal LLM-based transcription tool, and (2) a
video recording of the participants’ shared screen during the
coding task stage. Technically, the entire interview, includ-
ing the embedded coding tasks, was video-recorded using
the recording tool of the video-conferencing platform that
we deployed. However, we only used the audio recording of
all verbal interactions with our participants for transcription
and video recordings were exclusively used to analyze their
programming activities, visible on their shared screens.

The sequential order of the data analysis differed from the
sequential arrangement of the data-collection process: we
started our videographic [49] analysis with coding-task seg-
ments of several interviews selected according to the principle
of maximal variation between cases [48, 54]. From the en-
tire pool of full-fledged interviews, we initially selected pairs
of interviews that displayed different patterns of coding-task
solutions. In this way, we identified six different clusters of
participants. Members of each of these clusters had in com-
mon that they went for the same solution options in CT1 and
CT2. Then we selected two cases (whenever available) from
each cluster and analyzed them in depth.

The first step of the in-depth analysis was the formal cod-
ing of screen-sharing videos and the corresponding transcript
sections. The goal of this procedure was to identify different
activity steps of the programmer and code them accordingly
using a CAQDAS package [99]. In the next step, we created
concise content-related descriptions of every step made by
the respective developer. Then, we compiled workflow dia-
grams for every participant by putting step descriptions into a
table where each column represented one interviewee from
the sample core. This table allowed us to compare paths of
action taken by these participants and to identify crucial de-
cisions [27, 28, 98] as well as resulting activities which, in
the end, led to particular coding-task solutions. Finally, we
identified axial categories, i.e., abstract descriptions of key
characteristics of each developer’s coding-task "journey" [91].

Interview transcripts were analyzed using a combination
of the "top-down" coding approach, as proposed by the Qual-
itative Content Analysis [55, 77], with some elements of the
’bottom-up’ coding approach inspired by the Grounded The-
ory [11, 16, 34, 52, 91]. On the one hand, our interview guide
determined the main topical areas addressed by our partic-
ipants in their answers. Hence, we derived an initial set of
codes from our interview-guide questions. On the other hand,
however, we also developed some new codes in an "open-
coding" manner while reading through the interview tran-
scripts. Most of these "bottom-up" codes specified the content
of participants’ statements made within one of the topical
contexts introduced by our interview-guide questions. Hence,
new codes, created in the "bottom-up" process, aligned with
more abstract "top-down" codes derived from the interview
guide: the earlier turned into the specification of the latter.
We created the final version of the interview code book by
putting our initial set of codes and newly emergent codes into

one hierarchical system of codes. We note that while a single
researcher performed the entire content analysis, two addi-
tional researchers with >10 years of experience in qualitative
studies were involved during the analysis and regularly dis-
cussed the approach to arrive at the resulting set of codes. We
adopted this methodology as an acceptable trade-off due to
the lack of a subject-matter expert on extensions who could
also sufficiently analyze qualitative data and vice versa.

4.5 Limitations
Generalizability: Our study focused on developers with live
extensions from the two largest stores, CWS and AMO, which
may limit to some extent our sample diversity. However, this
ensures our findings are rooted in real-world practices, as
these developers have firsthand experience with widely ap-
plicable platform-specific guidelines and challenges. While
we observed unequal gender representation and note that our
results are shaped by participants’ technical backgrounds and
experiences, we assume that the insights gained still provide
valuable insights to addressing key concerns in the ecosystem.

Study Environment: We explicitly instructed our partici-
pants to take all necessary actions during the coding tasks as
they would in their own development process. However, we
acknowledge the potential influence of the artificial interview
situation on their behavior. To minimize discomfort, we gave
them the option to explain their solution strategies verbally
and ask for clarifications at any time during the task.

Biases: We acknowledge the possibility that our results
may have been influenced by social desirability, opt-in biases,
or demand effects [10]. To mitigate these risks, we refrained
from disclosing the study’s specific focus on security and
privacy (S&P) topics during recruitment and encouraged open
and candid discussions throughout the interviews.

5 Study Results

In the following, we outline the demographics of our study
participants and conduct an in-depth analysis of our findings
from the interviews.

5.1 Participants’ Characteristics
We sent email invites to the extension developers, as listed
on 4th July 2024 in CWS & AMO, based on our sampling
strategy discussed in Section 4.3. We reached out to 4,042 de-
velopers on CWS and 2,449 developers on AMO, distributed
across four batches of variable size between July 2024 – Nov
2024 This accounted for a total of 8,490 and 3,275 extensions,
respectively. We received 322 survey responses, where 170
people finished the survey, and 165 of these consented to par-
ticipate in the study. These 165 people span from all over the
world and published extensions across various categories and
with differing motivations (refer to Figure 2 and Table 2 in

Coding Tasks CT2: Drop XFO CT2: Used ALLOW-FROM CT2: No Solution

CT1: storage.local P01, P08, P16, P17, P20 P11 P05+, P06*, P12, P21*

CT1: storage.sync P03, P09 P02, P07 –
CT1: storage.localStorage P04, P10 – –
CT1: Store in Background – – P18
CT1: No Solution – – P13, P15, P19

Table 1: Combinations of individual participants’ solution strategies for both coding tasks. (* – Did not finish, but outlined
approach, + – the Amazon website went under maintenance, thus, rendering the task to be incomplete.)

the supplementary material [3] for details). We analyzed the
pre-screening responses and sent interview scheduling instruc-
tions to 29 people. Unfortunately, we faced language-based
restrictions with six people (since we planned to interview in
English) while two of them did not respond. We successfully
interviewed 21 of these interested participants, from 15 dif-
ferent countries in the world. As detailed in Table 2, 17/21
participants have an educational background in Computer
Science, 15/21 are currently employed in Computer Science
or related profession. 15 participants also had prior Web de-
velopment experience. The participants also differed in terms
of their extension development experience (min: 1, max: 20,
mean: 4.58) and their age (min: 19, max: 56, mean: 32.44).
The extensions developed by these participants had a com-
bined installation of 6,162,000+ (6M+) across 37 Chrome,
and 239,983 users across 19 Firefox extensions. Please refer
to Table 2 for demographic, technical and extension-related
statistics of individual participants and their extensions. While
4/21 participants had <100 install counts for their extensions,
we still included them in our study as they showed apparent
signs of S&P mindset (refer to our detailed assessment in the
supplementary material (Appendix C) [3].)

Notably, three interviewees (P13, P19 & P15) only partic-
ipated in the non-coding task stages of the interview as the
first two did not directly develop their extensions but were
Product Managers in an extension-developing organization.
Whereas P15 was uncomfortable working on the tasks and
mentioned that they did not read the interview objectives care-
fully. On the contrary, we discarded the interview of P14 from
the data analysis as this person mentioned during off-boarding
that they had investigated the researchers’ background and
prepared for the interview accordingly.

5.2 Coding Tasks

In this section, we discuss the concrete solution strategies
outlined by the participants and the associated critical factors
they considered while working on the task. As summarized
in Table 1, we compare and contrast the path of actions and
decisions taken by individual participants for each task based
on two factors - i) their internalized knowledge and ii) the
critical junctures. The term "internalized knowledge" refers
to participant’s ideas derived from prior experience or their es-
tablished patterns of thought related to the task or its particular

solution. It is grounded in social-scientific studies on knowl-
edge internalization by individuals and human groups like
organizations [8, 50, 86, 96]. We contrast it with "external
knowledge" not directly possessed by our research partici-
pants, which must be acquired from different (online) sources
while working on coding tasks. The term "critical juncture"
denotes situations where our participants had to make cru-
cial decisions that led to a particular solution strategy. We
borrowed it from the literature on institutionalist social sci-
ences, which refers to large-scale societal developments [13]
and adapted it to the analysis of individual actions taking
place under structural constraints (requirements of coding
tasks, publicly available data etc.). Figure 3 demonstrates our
participants’ flow of actions across coding tasks.

5.2.1 Task 1: Store Address Data

As explained above in Section 4.2, Coding Task 1 captured
participants’ privacy mindset and considerations. It required
developers to implement a "Save Address for Later" feature
on the website using the extension. 14/21 participants finished
the first task, two implemented their approach semantically,
i.e., included the code to record and retrieve the data using
the data storage API of their choice. However, the final code
did not execute without error due to syntactical issues while
retrieving the data. One participant verbally outlined their
exact approach instead of writing the code. Four different
solutions emerged from this coding task. 14 participants chose
the privacy-focused means to save the data – the storage.sync
& storage.local APIs dedicated for extensions, two of them
used the Web Storage API, and one of them argued in favor
of storing the data in the extension background. Notably, the
two storage APIs: storage.sync and storage.local only differ
in terms of their functionality (i.e., the former enables cross-
device sync) while providing identical isolation and privacy
guarantees from other extensions and the websites [57]. Thus,
we consider these two to be privacy-focused solutions here.

Internalized vs External Knowledge: 7/14 participants
who chose to use the storage APIs explicitly indicated that
they are familiar with the API and/or have worked with it.
Thus, they followed a linear set of steps aimed at the solution
envisioned by them from the very beginning. P01 referred to
their previously developed extension to extract the associated
code snippet, whereas P03, P06, P09, P11, P20 and P21 re-
ferred to the official documentation (i.e., Chrome or MDN) to

implement their own solution (...we’re gonna use storage.sync
...I just prefer sync most of the time – P09). P11 and P21 could
not solve the syntactical issues with the getter API due to their
lack of knowledge in handling the async/await constructs in
JavaScript. Interestingly, while P17 did not make an explicit
statement to indicate their familiarity with the API, they ar-
rived at the solution strategy during implementation by using
Supermaven – an AI code-completion plugin for IDEs [92].
The plugin instantly auto-generated the code without even
having to provide the input seed character to clarify their so-
lution strategy. In contrast, P09 used GitHub Copilot but also
provided an initial seed to auto-complete the rest of the code.

6/14 participants did not have any prior knowledge on the
task, three of these searched on the Web for related resources
and arrived at the common solution strategy – the storage
APIs. One of them used the entire task description as a prompt
to ChatGPT and copy-pasted the solution from there. On the
contrary, the remaining 2/14 (P12 & P16) initially decided to
use the localStorage API and searched for related resources
on the Web. However, the search engine results directed them
to use the storage API for extensions as their final strategy.

P04 decided to use the localStorage API very early and
did not deviate from their strategy. Whereas, P10 searched
on the Web and had a cursory view on a Stack Overflow post
suggesting the storage API. However, they chose to refer to
the MDN docs listed in the search engine result and decided
to use the localStorage API. Orthogonally, P18 suggested to
store the data in the extension core with IndexedDB (...register
a new background script, create index database so it’s going
to be like a persistent thing). Interestingly, the solution here
does provide the same privacy guarantees as the storage APIs
since the extension core is contextually isolated.

The prior knowledge and experience of the developers play
a crucial role in developing strategies to implement privacy-
sensitive functionality for their extensions.

Information Sources: The search engine results and the
information sources referred to by the participants were piv-
otal for the end strategy. For instance, P16 initially indicated
to use the localStorage API. However, when searching for
the syntax and the semantics, they ended up on the Chrome
docs on the storage API and copy-pasted the sample code to
formulate their own solution.

“...we would collect I guess the address we would then store
that in local storage” – P16

Similarly, P12 also contemplated different storage mecha-
nisms they would ideally use for the task: cookies or Web
Storage, and searched for related resources. However, the
search results again listed the MDN docs on the storage API
here, which they then followed to arrive at their solution.

P10, contrastingly, did not follow the storage API strat-
egy they came across in the search results but opted to look
specifically at their preferred resources – MDN docs.

“...I’ll see Firefox, I like Firefox documentation” – P10

Interestingly, the Google search result to the query only
showed MDN resources on client-side storage APIs [58] and
not the extension storage APIs [57], contrary to the case of
P12 who used DuckDuckGo. Naturally, the search results
differed based on the query itself. However, we empirically
tested this to compare and reproduce the results and noticed
that the chosen search engine and the indices may influence
the top search results shown to the users, as was the case here.

To summarize, we observe that the accessed and available
information sources, coupled with personal biases, may also
influence the development practice, thus leading to more or
less S&P-focused strategies.

Privacy Considerations: After the participants stopped
working on the task, we asked each of them to explain their
solution strategy, the underlying reason(s) for choosing a par-
ticular strategy, and any alternative strategy that they could
think of. Four participants suggested using encryption before
storing data on the client side. However, P11 underlines that
encryption on the client side is merely a security theater, as
they would then have to also protect the cipher keys. P04 was
only concerned with storing data in plain and mentioned that
they would store the data in a session-bound manner such
that it is deleted once the user is logged out. P03 and P09
also mentioned that since users implicitly trust the browsers,
it makes sense to store data in the browser. P11 further added
that storing data locally offers better privacy guarantees, and
mechanisms like Apple Keychain may even allow to preserve
its confidentiality. Contrastingly, P03, P06, P09 and P17, who
previously used the storage API based on their prior knowl-
edge, suggested using any of the Web Storage APIs, as they
are functionally similar and even easier to implement (...start
storing it in local storage maybe tag it to the session storage –
(P06)). On the contrary, five participants recommended stor-
ing data, optionally with encryption, on a remote server or
using third-party service providers.

“would stored it through Firebase. It takes care of the
encryption on its own” – P05

We observe that while developers may resort to specific
developmental patterns that seem to be privacy-focused, unfor-
tunately, those patterns are often driven by functional benefits
rather than their concrete understanding and considerations
of the associated S&P risks. For instance, P03 mentioned
that they did not use the localStorage API in the first place
only because it is not supported in the background script, and
Chrome may altogether scrap the API in the future. P17 men-
tioned that the deciding factor was the persistence of data with
the storage API, as websites can wipe out the localStorage.
Similarly, many participants considered Web Storage APIs as
an alternative as they were unaware of the differences with
the storage API. P07 only realized the differences after the
task and confirmed with us.

“...if I were to call Chrome store.sync here and save this
address, would other extensions have access to this” – P07

Key Takeaway: Although most developers solved the task
using the privacy-focused storage API, they were unaware
of its benefits and mentioned using the Web Storage API
as an alternative.

5.2.2 Task 2: Check Price On Amazon

The second coding task focused on the security-related mind-
set and considerations of extension developers. The task re-
quired them to handle the XFO headers sent by the test ap-
plication such that it allowed the extension-injected iframe to
be successfully displayed on the website. 12/17 participants
completed the task with a working solution while three of
them did not finish the task. P12 and P18 opted out from the
task due to the lack of background knowledge and expertise,
and time constraints, respectively.

Internalized vs External Knowledge & Path of Ac-
tions: Contrary to CT1, only one participant explicitly indi-
cated having internalized knowledge of the problem statement
and the solution strategy. The rest of the participants never
modified HTTP headers through browser extensions before
and obtained familiarity with the task by seeking help from
different information sources (acquiring external knowledge).
Some participants were even surprised to find out that ex-
tension could modify HTTP headers. Thus, we focus on the
statements made and the paths taken by the participants to for-
mulate their solution strategy here based on the information
sources they referred to. Seven participants took a sequential
set of steps to arrive at the solution based on the concrete
suggestions from the Stack Overflow post or ChatGPT they
followed. Whereas two of them verbally presented their initial
solution strategies to get feedback from the interviewer, and
then took a detour to navigate to the correct solution. The re-
maining three participants tried and tested different unrelated
approaches (e.g., using web accessible resources, configuring
HTML attributes for the iframe, enabling CORS headers, etc.),
as pointed by ChatGPT or based on their whim before the
interviewer directed them to the right path. Notably, while we
occasionally felt compelled to explain the task requirements
in further detail to save time, we made sure not to influence
the end solution or participants’ mindset in any sense.

Information Sources & their Impact: The participants
referred to various resources on the Web to familiarize them-
selves with the task and devise a solution strategy on the
right path. The most prominently referred sources were Stack
Overflow (SO) and ChatGPT. In fact, 6/12 participants imple-
mented the entire solution based on the answer from a popular
Stack Overflow post on header modification [87], which also
includes P03 with prior experience with header modifications.
Two others were also inclined to implement their solution
based on the popular SO post here, but only after reading the
entire official docs on the corresponding declarativeNetRe-
quest permission required to intercept the headers.

Seven participants consulted ChatGPT to obtain a solution

(...this is a good case to just ask like an ai assistant – P09).
However, in most cases, they only received suggestions that
used web-accessible resources to inject a static HTML page,
which is an incorrect solution here. Two of them, however,
were able to formulate their entire solution through ChatGPT-
derived suggestions on dropping the XFO header, while two
participants used the suggestion here together with the popular
SO post above and other blog posts to implement the solution.

Two remaining participants copy-pasted code from the sam-
ple extensions provided by the MDN [60]. P10 also dropped
CSP in addition to the XFO header, as suggested by the
GitHub resource they referred to. We note that the participants
often asked us to help with the correct configuration of spe-
cific primitives within the header-modifying ruleset (e.g., ini-
tiatorDomain, resourceTypes, etc.) they copied from different
resources. However, we limited our feedback to avoid unin-
tended influence on the final outcome.

We observed a direct impact of the resources referred to
by most developers where they simply copy-pasted the code
and did not change anything further for the functionality to
work, except in three cases. All three of these participants
implemented a solution that would keep the XFO header intact
and allow-list the embedding domain for framing through the
long-deprecated ALLOW-FROM attribute. Additionally, the
complexity of the task may also have influenced developers
to avoid any deviations from the available solutions.

Security Considerations: As highlighted earlier, all but
one participant did not know that browser extensions could
modify the HTTP headers or have not modified them through
extensions. Nevertheless, 10/15 participants explicitly stated
that meddling with HTTP headers is dangerous and were
skeptical of performing such operations in their own extension.
This is irrespective of the fact that only 6/15 participants were
vaguely familiar with the XFO header (...it seemed a little
bit, bit hacky – (P16)). Two participants also felt that such
behavior in extensions could lead to less trust among users.
P03 added that, unfortunately, there may not be a feasible
alternative to enable expected behavior within extensions
(...can’t really think of another way to get around this – P03).

Fortunately, eight participants were open to exploring alter-
native approaches and even suggested opening the page in a
new tab. Three participants intended to explicitly allow the
framing behavior through modifying the values of the XFO
using the ALLOW-FROM attribute. P02 searched on the Web
about the header and extracted the attribute from the sum-
mary auto-generated by the Google Search AI [35]. Whereas
P07 and P11 did not perceive the deprecation notice for the
attribute on MDN docs [61]. Unfortunately, their attempt to
preserve the header and provide a "better" solution only re-
sulted in a no-op since XFO with ALLOW-FROM is ignored
by most modern browsers, and no security policy is enforced.

In light of these findings, we can assume that extension
developers act responsibly and are mindful of the security
posture of their extensions. As evident in the cases above, the

general notion of certain actions, such as script injection or
header modification, positively influences the developers even
when they are unaware of the exact details. However, lack of
S&P awareness and attention to detail could also give them
a false sense of security, similar to our observation in CT1.
This was evident with the three participants resorting to the
deprecated ALLOW-FROM primitive.

Key Takeaway: Despite not being aware of the exact solu-
tion strategy, most developers were hesitant and skeptical
of publishing an extension that modified HTTP headers. In
fact, they readily suggested enabling the expected behavior
through new tabs as a trade-off.

5.2.3 Permission-related Flags

As outlined in Section 4.2, the manifest of both extensions con-
tained two redundant API permissions and host permissions
set to <all_urls>. We explicitly asked all our participants
to review and make any necessary changes they would like to
make throughout the extension, to hypothetically publish the
extension right away. Importantly, we did not explicitly men-
tion or lead them to the manifest or any other file in particular.
Interestingly, only 8/17 participants could identify at least one
redundant API permission in either of the two coding tasks.
In contrast, host permissions were not apparent to most par-
ticipants as only six of them suggested changing them across
the coding tasks. Additionally, only one of them could detect
host over-permissions among web_accessible_permissions,
while none of them actually reported the redundant use of
all_frames. Two participants (P11 & P16) "suspected" host
and API over-permissions and mentioned "to review it later".
Overall, 8/17 did not report any permission issues in the man-
ifest. Similarly, 15/17 participants did not comment at all on
use_dynamic_url, while two of them inquired what it was.
We believe that the detection of API and host over-permissions
in even one extension is representative of the associated devel-
opment practices of participants to account for the cognitive
load and the influence of the study environment.

We observe significant deviation from what the participants
believed to have inculcated in their development habits versus
the patterns exhibited during the coding tasks. For instance,
P04 claims to use the minimum possible set of permissions;
however, did not notice any permission bloats. Similarly, P09
also mentioned that they are generally very careful about per-
missions as it may determine the length and difficulty of the
review process; however, they could not identify the issues.
While P20 accurately removed the scripting permission from
the manifest of CT2, they supported the use of the redundant
cookies permission – "...cookies permissions are fine". In
general, while most participants reported being cautious with
permissions and reviewing them before submitting them to
the stores to avoid rejection, they only considered the API per-
missions and did not show any concerns for host permissions.

Key Takeaway: Developers may implicitly follow the Prin-
ciple of Least Privilege for APIs, however, potentially only
to reduce the reviewing and publishing overhead. This may
also realistically differ based on their (lack of) knowledge
of related primitives and desired values.

5.3 S&P Threats and Awareness
We asked our participants about their awareness of S&P
threats associated with browser extensions and how they
model them for their own extensions. All but one participant
reported at least one security or privacy threat with extensions.
The most commonly mentioned threats were data, history,
and credentials theft, XSS, script injection, and key logging.
Most participants with knowledge of security attacks had Web
development experience and mentioned that it could apply
to extensions, too. However, three participants also explicitly
expressed their lack of knowledge and experience in modeling
S&P threats with extensions. Three other participants were
concerned with future malicious updates of popular exten-
sions and the fact that the users do not notice such behav-
iors. P11 disregarded the Web history of users as PII "since
browsers collect them anyways". P08, interestingly, believed
that data collection is not a privacy problem and platforms
should relax the restriction around it to incentivize developers
and denied cases of data theft through extensions in the past.

“I want to make some money of it, how do I do that without
collecting data?” – P08

In general, most developers showed a high level of understand-
ing of the S&P threats with extensions, but lacked knowledge
on how best to mitigate against them (...I have no idea how to
make it safer – P01).

We also asked our participants about their knowledge of
specific S&P threats and related concepts.

Inclusion of Third-party SEO & Analytics Script: Five
participants reported that they get emails every week by "third-
party SEO & Analytics companies" to include JavaScript into
the extension to get better insights on their user base. These
entities even offered a monetary compensation between $50–
$100 per 1,000 users with possible negotiation on call or
even showed interest in buying the extension for $10,000, as
mentioned by P21. P04 was concerned that these scripts may
inject ads or even be "malware-ish," which could affect their
business and credibility, while P17 believed they might be
interested in affiliate fraud. P19 added that these companies
are often interested in popular extensions and contact them to
include third-party scripts. Interestingly, P13 worked in such
a company and was aware of such malpractices.

“...these companies just scrape a lot of information... I think
actually the stores don’t do so much against it” – P13

We believe this to be dangerous and an anti-S&P pattern in
the ecosystem and would urge the platforms to strengthen the
review process to thwart such behavior.

Impact of Malicious Websites: Six participants said they
did not consider this before. Among these, P07 retrospectively
realized this being an issue with one of the ad-blockers they
used, while P09 mentioned that they were worried about Twit-
ter/X blocking their extension, as it operated on the platform.
Orthogonally, five participants denied the fact that extension
could be attacked, stating that this is unrealistic. Three of them
could think of theoretical ways (e.g., malicious data flow, Web
Storage APIs, etc.) to exploit the extension but were not sure
if this would be feasible ("I don’t know even if it’s possible" –
P18). Unfortunately, we observe an apparent lack of knowl-
edge of the threat surface among extension developers, which
may negatively influence their secure development processes.

Extension Fingerprinting: Seven participants reported
that they had never heard of fingerprinting through exten-
sions and were interested to learn more about it. Six of them
were familiar with the overall concept but did not model them
for their own extensions. Of these, P07 mentioned that they
do not know how to protect against such issues, while P15
mentioned that it is impossible. P08 did not see this as an
S&P problem and said that it is statistically difficult to finger-
print extensions. Interestingly, P11 believed that platforms
may be interested in tracking users; thus, no solution ex-
ists (don’t think Google would want to mitigate that. They
want to track people – (P11)). Three participants showed a
clear understanding of the topic and mentioned having de-
ployed appropriate measures. P20 reported that their users,
who perform penetration testing and archiving with the ex-
tension, were concerned about being fingerprinted by web-
sites, and thus, the extension company removed all the web-
accessible resources to avoid tracking through identifiers. P18
also mentioned having defensive measures in place against
fingerprinting; however, on manual inspection of their live
extension, we found that it was not actually the case. At the
very least, they injected web-accessible resources on *://*/*
without setting use_dynamic_url to true. Given that the ex-
tension offered a privacy-critical solution to their free and
premium customers, we believe such misconceptions may
have grave consequences. Importantly, none of them knew
about the use_dynamic_url primitive and its usage before,
which leads us to believe that developers are not aware of
mitigation against extension fingerprinting.

Isolation Contexts and Mechanisms: We asked partici-
pants about their understanding of the isolation across differ-
ent extension components and its relevance. Four of them did
not know about the concept. This included P18 who worked
in an organization that developed S&P solutions as extensions.
On the contrary, five of them assumed this to have something
to do with the security of the extension, while two of them had
clear misconceptions: P05 thought it existed to prevent bots,
while P10 confused isolation with permissions. P09, P19, and
P21 seemed to have thoroughly understood the concept and
mentioned that it prevented privilege escalation and restricted
the interaction between malicious websites and extensions.

Key Takeaway: Extension developers are familiar with
the S&P threats and are concerned about their extensions’
behavior. However, our participants do not have sufficient
knowledge to act accordingly.

5.4 S&P Practices & Developmental Patterns
We captured the implicit S&P patterns of the participants dur-
ing the coding tasks and asked explicit questions about their
best practices. As highlighted in Section 5.2.3, we observed
many developers to show caution against using excessive
API permissions. Further, they were open to exploring less
intrusive solutions for CT2 and were hesitant to publish exten-
sions that modified HTTP headers unless absolutely required.
Three participants even suggested avoiding interaction with
the DOM as much as possible and, instead, enabling similar
features in the extension UI popups. However, this was not the
case for CT1, where most participants focused on the ease of
implementation. Participants who opted for the storage.sync
API also reasoned along the lines of its cross-sync capabilities
rather than its privacy benefits against their Web counterparts.

When explicitly asked about specific S&P-related practices,
we observed various development patterns and a few anti-
patterns in their responses. P03 and 13 said to have enforced
the Principle of Least Privilege. P18 mentioned that they have
a secure end-to-end software development life cycle and zero-
knowledge structure enforced for both free and premium tier
extension users. P11 argued that remote servers should only
be contacted for synchronization across devices and nothing
else, while P20, P09, and P02 favored for data storage on
remote servers for better privacy guarantees. Contrastingly,
P08 believed that privacy depends on the users’ definition.
P04 also mentioned that privacy is a minor concern here. P04
also said that they avoid the hassle of going through the review
process by only pushing annual updates to their extension.
They do so by offloading most of the logic to their website
on which the extension operates and, further, injecting the
code to the extension at runtime. Notably, this behavior is
against the store policy, and they are even concerned that the
extension might be taken down in the future [18]. However,
they believe that the review process might slow down their
business needs and their users’ expectations.

S&P-related Resources: Most participants followed the
official docs of the platforms as a single source of information
for most of their learning. P03 added that their Web develop-
ment experience also adds to the understanding, while P21
said that much of their expertise comes from the security train-
ing they undergo for their employment. P17 relied on com-
munity support for S&P knowledge, such as Discord servers
and Slack channels, common social groups for techies and
entrepreneurs, and YouTube videos, whereas P06 followed
SubReddits. However, all of them agreed upon the fact that
one needs to actively look upon the Web for best practices
and guidelines, as the official docs does not always help.

:///*

Resources

Practices

Handling User Data

Implicit

Threats

Resource-related

Platform-related

S&P Mindset

Security

Incentives

Trust & Safety

Privacy Policies

Privacy

Patterns

Expectations

MV3

Awareness

Roadblocks

Explicit

Figure 2: The mindmap of the S&P-related themes that we identified in our data analysis.

Privacy Policies & User Data: 14 participants mentioned
having a privacy policy for their extension either because
it was a mandatory step or the platforms nudged them to
include one. Three of them complained about the lack of
support for creating these policies. Business organizations,
as in case of P13 and P20, consulted legal experts to form
privacy policies compliant with global regulatory frameworks.
In general, several participants emphasized that they do not
store sensitive data or only store data that the user consented
to. P18 talked about maintaining a zero-knowledge structure
about their users’ data, whereas P09 believed in being as
transparent as possible to their users about their data and
privacy policies. P08, however, argued that developers should
be allowed to collect user statistics or anonymized data to
incentivize development and maintenance. P13 said that some
extensions harvest a lot of user data and monetize these.

Trust & Safety of Users: Many participants stated that
they considered different trust and safety factors and related
practices during the interview. P08 and P11 mentioned that
they trust Google to perform thorough review checks on sub-
mitted extensions and their importance in building users’ trust.
P03 and P09 argued that since users inherently place trust in
browsers by using them, it makes sense to utilize the browser
APIs for storing sensitive data to ensure users’ safety, whereas
P06 contradicted this, and preferred to do this remotely. P21
believed that open-sourcing the code helps build trust among
users, which they did, while P10 recommends fellow devel-
opers to "do exactly what you describe" to instill trust among
users. On the contrary, P04 said that the review process is not
foolproof, and the extension takedown can create trust issues
with users, which can have implications for businesses.

Key Takeaway: Developers often follow basic data pro-
cessing and user consent standards but struggle with navi-
gating to the correct resources to build further. Other fac-
tors, such as business needs and professional background,
may also influence the development pattern.

6 Developer-External Influences on S&P

While prior research has extensively documented benign-but-
buggy behavior in browser extensions through technical mea-

surements [30, 53, 85, 101], these studies did not focus on
identifying the root causes of such issues, or explored the S&P
mindsets of extension developers. Our research addresses this
research gap, offering insights into the challenges that hinder
developers from creating S&P-friendly extensions (as sum-
marized in Figure 2). We, now, examine the socio-technical,
ecosystemic, and external factors, as reported by our partici-
pants, that influence the S&P mindset of extension developers.

Economic Friction: Developers highlighted a lack of in-
centive for them to publish and further maintain extensions.
Of the four participants who already ran businesses and gener-
ated revenue through their extensions, one even said that they
would be nervous if their business depended entirely on the
extension. Among other reasons, the lack of platform support
combined with an opaque review process concerned them
the most. It is a common belief that while extensions with
few features neither lure enough users nor have the potential
to generate monetary benefits, a feature-rich extension also
incurs additional infrastructural costs. As per our participants,
both direct monetary expenses (e.g., server rent) and time re-
sources to maintain extensions (to remain compliant with the
latest S&P best practices) necessitate some form of revenue.

Platform Dissonance & the TINA Effect: Participants
showed a general consensus on the fact that Google’s influ-
ence on the extension ecosystem and the act of technological
control is an anti-pattern and concerning. Drawing compar-
isons to Mozilla, they mentioned that, while Mozilla is not
perfect, Google is not developer-friendly and community-
oriented, neither does it support new developers (P10). The
introduction of the MV3 standards further fueled these argu-
ments since the changes deviated from the established frame-
work (P04), and Mozilla was forced to adapt to the Google-
induced changes (P09). Beyond our study, ad-blockers also
claimed to have been significantly affected by the controver-
sial push by Google (P03) [1, 93]. Two participants even
argued that privacy is a lost cause with Google since “wants
to track users anyway” (P01, P11). Given the market share
Google holds, the developers showed the symptoms of TINA
effect: simply put, there is no alternative given Google’s large
user base. However, the developers strictly argue in favor of
Mozilla and even Apple to raise their voice against what they

called an “Internet monopoly” (P09). In general, our partici-
pants dislike the “autocratic” (P17) attitude of platforms in
shaping the ecosystem. Although, they also collectively agree
that the platform should act as the responsible stakeholder, but
only through incorporating developers’ and users’ feedback.

Security Apathy: Although Google and Mozilla, as the
main vendors of extensions markets, offer similar features,
developers often find it painful to maintain a cross-browser
product. This is because even when most of the APIs are sup-
ported by both browsers [97], they may have distinctive be-
havior, incurring additional overhead for developers to adapt.
Further, the build and publishing steps, the review process,
and the decision timeline differ for the two platforms. There
exists no CI/CD pipeline to build and publish extensions with-
out additional manual effort. Safari adds insult to injury since
it has different publishing requirements. Many participants
also complained about the inconsistent review process across
the two stores and even across updates within the same store.
The complex error codes that they may receive in case of re-
jections/takedowns are also difficult to parse, given that there
are no store liaisons assigned to talk to. We believe that the
overall tedious process of publishing extensions, compliance
with the blackbox review process, and the lack of unified set
of APIs across browsers lead to a sense of complexity fatigue.
Unfortunately, this may result in considering S&P only as an
afterthought over functionality and not by design.

7 Conclusion and Call to Action

We investigated the S&P mindsets of browser extension de-
velopers to identify the root causes of vulnerabilities in ex-
tensions. Our semi-structured interviews with 21 extension
developers reveal that while developers often demonstrate an
implicit awareness of generic security threats in the broader
Web ecosystem, many reported having little to no knowledge
of how to best protect their extensions against them. Devel-
opers attributed their lack of S&P awareness to the scarcity
of relevant resources and insufficient support from platform
providers to encourage secure development practices. Other
contributing factors included misaligned incentives, tooling
limitations in the extension publishing process, inconsistent
platform behaviors, and opaque vetting mechanisms. Overall,
these challenges often relegated S&P considerations to an
afterthought in the development process. Here, we provide
high-level recommendations to individual stakeholders, based
on our observations in this study, for a sustainable ecosystem.

API documentation: 19/21 participants explicitly stated
that they refer to the Chrome or Mozilla Developer docs for
development. This was also reflected in the resources they
referred to during the coding tasks. However, the official docs
does not include the S&P benefits or issues around using cer-
tain APIs for development. For instance, neither the Chrome
nor Mozilla docs on the storage API [57, 58] emphasized that
the data stored through the Web Storage APIs is accessible

to Web applications, and thus, not private. To exacerbate the
issue, developers may either operate under the assumption
that no S&P issues exist as they strictly followed the official
guidelines or even give up due to lack of supporting resources.
Here, we ask browser vendors to take concrete steps towards
providing necessary details around S&P-critical APIs so that
developers can make an educated decision.

Consistent Submission/Vetting Guidelines Browser ven-
dors use a black-box vetting system to detect suspicious ex-
tensions. Yet many participants described it as inconsistent,
with extensions wrongly taken down and later reinstated af-
ter clarification. While the system may favor false positives
over false negatives, this discourages developers. For example,
P04 lost users and business when their extension was wrongly
removed during the Christmas holidays. The problem is wors-
ened by differences in how and when reviews occur. Mozilla
requires both source code and distribution build for manual
review, while Chrome only asks for the latter. Developers are
reluctant to share source code with AMO, citing its monetary
value. AMO allows instant publishing with review delayed
up to six months, while Chrome vets and acts immediately, as
noted by P10, a Mozilla Recommended Extensions panelist.
To make matters worse, reviewers within or across stores may
flag extensions for different, undocumented reasons due to
the system’s opacity. We recommend vendors improve trans-
parency and consistency in the review process so developers
can plan accordingly. We also urge vendors to align submis-
sion and vetting practices across extension stores.

S&P Practices: While adequate security and privacy-
related information is imperative to take informed decisions,
as observed in our study, this is unfortunately not always
enough. Most participants were either unaware of security
and privacy threats associated with extensions or only had
surface-level knowledge of user data exfiltration through ex-
tensions. Moreover, none of them explicitly modeled any of
the threat vectors for their extension. This also underlined by
our findings from the first coding task, where the participants
only considered the privacy of address data only when explic-
itly asked about alternatives. Thus, we recommend developers
to proactively consider the threats and the usability vs S&P
tradeoffs during individual steps of extension development.

Developer-friendly Policies Lastly, several participants
questioned the deprecation or refactoring of existing APIs in
favor of newer, limited alternatives. This reflects broader con-
cerns around the restrictions introduced by Chrome’s MV3
standards [32, 40]. For example, P03 preferred sticking with
chrome.storage, citing fears that Chrome may deprecate
other APIs without notice, increasing migration burden. Sim-
ilarly, P07 and P09 noted that browser vendors often make
impactful policy changes without accounting for developer
input. To ease developer fatigue, we urge vendors to incorpo-
rate developer feedback into policy decisions, and encourage
developers to proactively communicate legitimate concerns
to vendors when possible.

Ethics Considerations

We proactively considered and modeled the ethical and le-
gal factors associated with the individual stakeholders that
may be directly or indirectly affected throughout the course
of the design and execution of this study. Additionally, our
Institutional Review Board approved our study design and the
methodology before we moved to the execution stage. Below,
we discuss in detail the potential risks and benefits associated
with these stakeholders in line with our adopted methodology.

Recruitment Strategy: We collected the publicly available
email addresses of the extension developers and associated
details on their extensions that were available on CWS and
AMO. However, we only sent invites to those developers who
fulfilled our study criteria. While we could have recruited
participants through social media platforms and developer-
focused forums, we would have been unable to derive concrete
details and statistics on their live extensions. Further, none of
the participants expressed any discomfort or anguish; some
were even positively surprised to be contacted for the study.

Participants’ Rights: In the first stage of our study, we
sent email invites to the extension developers, inviting them
to participate in our study by completing the pre-screening
survey. The questionnaire included a detailed explanation
of the purpose of the data collection, and we only collected
data from those individuals who provided explicit consent
to participate. Further, we separately collected individuals’
consent for data collection during the interview (i.e., audio,
video, and screen recording), provided to them along with the
scheduling details. In addition, right before starting the inter-
view, we verbally explained their rights, including the option
to quit at any time or to skip answering questions they felt
uncomfortable with during the interview. Participants could
also switch off the video feed during the interview if preferred.
During recruitment, we only informed participants that we
were Computer Science researchers to minimize potential
biases in their responses. However, we made sure to inform
them about our full background and the purpose of the study
after the interview.

Coding Task Design: We asked our participants to down-
load the extension files provided by us to work on the coding
tasks and share their screens. An alternative approach could
have been to provide them with remote access to our ma-
chines for the coding tasks to avoid any risk of capturing
user-sensitive data during screen-sharing. However, we pro-
vided them with the extension files to allow them to work
on their accustomed setup that they use for development: the
IDE, the AI tools and plugins used for development, and the
preferred browser. This approach allowed us to capture their
real-world development tools and environment while provid-
ing them with the flexibility to work as they usually would.
As a precautionary step, we explicitly asked them to close
any sensitive applications before starting screen-sharing, both
in the email containing interview details and verbally before

the task began. Unfortunately, one of the participants did not
carefully read the email and refused to work on the coding
task, as they were reluctant to download files to their machine.

The test website and the extensions designed for the coding
tasks did not request or capture any privacy-sensitive iden-
tifiers (e.g., IP address, device identifiers, etc.) at any point
and were hosted within our institutional network. The second
coding task involved embedding a live website – Amazon,
in an iframe as a solution by appropriately handling the
framing policy enforced by the website. We resorted to using
Amazon for our study to factor in the proximity to the real-
world scenario of the coding task in terms of the participants’
familiarity with the website along with the severity of the per-
ceived threat. Additionally, the task only required to query the
publicly exposed Amazon search endpoint for products and
load inside an iframe, with no further interactions required.
This ensured not violating any terms of service [6, 94]. Hence,
we believe that our coding task did not incur any tangible or
intangible damages to the live website.

Data Collection & Transparency: As discussed before,
we collected user data at different stages of our study for anal-
ysis. Importantly, we stored all the data collected through the
pre-screening survey and the interviews within our institu-
tional premises. Further, we deleted all the personally identifi-
able information (e.g., demographics, audio/video recordings,
etc.) associated with the participants upon the completion of
data analysis and only stored the anonymized and aggregated
results for later verification. We used the in-house instance
of the OpenAI Whisper model for transcription services. Nat-
urally, the artifacts related to this study are accessible ex-
clusively to the members directly involved in the study. At
no stage do we share any raw or processed data with any
third-party entities.

Responsible Disclosure: We believe that the insights gath-
ered from our study participants may help facilitate changes
and guide towards an improved ecosystem, including, but not
limited to, the security and privacy aspects. Thus, we plan
to create an additional artifact that would include the partici-
pants’ views, perceptions, and expectations beyond what is
discussed in this paper. We plan to reach out to the store ven-
dors and provide them with gathered insights so that they can
take the necessary steps in the future. Naturally, we will not
include any PIIs related to any of the participants in our study.

Open Science

As part of our commitment to the Open Science Policy, trans-
parency, and the reproducibility of our study, we open-source
the interview guide, the survey, the coding task package, the
source code of the website, as well as (only) the code book
generated from the raw data coded from our analysis [3]. We
will not share raw data such as transcripts or video recordings
for privacy reasons.

Acknowledgements

We would like to thank our reviewers and the shepherd for
their valuable feedback to help improve our work. We thank
all the pilot and study participants for their time and efforts.
We also thank Matthias Fassl for his constructive suggestions.

This work was conducted in the scope of a dissertation at
the Saarbrücken Graduate School of Computer Science.

References

[1] AdGuard. Mozilla solves the manifest v3 puzzle to
save ad blockers from chromapocalypse, 2023. URL
https://adguard.com/en/blog/firefox-manifestv3-chr
ome-adblocking.html.

[2] Shubham Agarwal. Helping or Hindering? How
Browser Extensions Undermine Security. In CCS,
2022.

[3] Shubham Agarwal. Zenodo Artifact Repository, 2025.
URL https://doi.org/10.5281/zenodo.15631753.

[4] Shubham Agarwal, Aurore Fass, and Ben Stock. Peek-
ing through the window: Fingerprinting browser exten-
sions through page-visible execution traces and inter-
actions. In CCS, 2024.

[5] Anupama Aggarwal, Bimal Viswanath, Liang Zhang,
Saravana Kumar, Ayush Shah, and Ponnurangam Ku-
maraguru. I spy with my little eye: Analysis and detec-
tion of spying browser extensions. In IEEE Euro S&P,
2018.

[6] Amazon. Conditions of Use, 2022. URL https://www.
amazon.com/gp/help/customer/display.html/ref=ap_
desktop_footer_cou?ie=UTF8&nodeId=508088.

[7] Amazon. Amazon search endpoint, 2025. URL https:
//www.amazon.com/s?k=.

[8] Helen Aquino and José Márcio de Castro. Knowledge
internalization as a measure of results for organiza-
tional knowledge transfer: the proposition of a theoret-
ical framework. In Tourism & Management Studies,
2017.

[9] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and
Aaron Boodman. Protecting browsers from extension
vulnerabilities. In NDSS, 2010.

[10] Nicole Bergen and Ronald Labonté. “everything is
perfect, and we have no problems”: detecting and lim-
iting social desirability bias in qualitative research. In
Qualitative health research. Sage Publications, 2020.

[11] Nicola Bücker. Kodieren – aber wie? varianten der
grounded-theory-methodologie und der qualitativen
inhaltsanalyse im vergleich. In Forum: Qualitative
Sozialforschung / Forum: Qualitative Social Research,
2020.

[12] Duc Bui, Brian Tang, and Kang G Shin. Detection of
inconsistencies in privacy practices of browser exten-
sions. In IEEE Euro S&P, 2023.

[13] Giovanni Capoccia and R. Daniel Kelemen. The study
of critical junctures: Theory, narrative, and counterfac-
tuals in historical institutionalism. In World Politics,
2007.

[14] Nicholas Carlini, Adrienne Porter Felt, and David Wag-
ner. An evaluation of the google chrome extension
security architecture. In USENIX Security, 2012.

[15] caseywatts. Making bookmarklet, 2017. URL https:
//gist.github.com/caseywatts/c0cec1f89ccdb8b469b1.

[16] Kathy C. Charmaz. Constructing grounded theory: A
practical guide through qualitative analysis. In Sage,
2006.

[17] Quan Chen and Alexandros Kapravelos. Mystique: Un-
covering information leakage from browser extensions.
In CCS, 2018.

[18] Chrome Extensions. Stay secure, 2025. URL https:
//developer.chrome.com/docs/extensions/develop/sec
urity-privacy/stay-secure.

[19] Chrome For Developers. Manifest file format, 2012.
URL https://developer.chrome.com/docs/extensions/r
eference/manifest.

[20] Chrome For Developers. Publish in the chrome web
store, 2014. URL https://developer.chrome.com/docs/
webstore/publish.

[21] Chrome For Developers. Follow-up on rejections and
takedowns, 2021. URL https://developer.chrome.com
/docs/webstore/check-review#follow-up_on_rejecti
ons_and_takedowns.

[22] Chrome For Developers. Chrome Web Store review
process, 2021. URL https://developer.chrome.com/d
ocs/webstore/review-process.

[23] Chrome For Developers. Can extensions use web stor-
age APIs?, 2024. URL https://developer.chrome.com
/docs/extensions/reference/api/storage#can_extensi
ons_use_web_storage_apis.

[24] Chrome For Developers. Extensions / Manifest V3,
2025. URL https://developer.chrome.com/docs/extens
ions/develop/migrate/what-is-mv3.

https://adguard.com/en/blog/firefox-manifestv3-chrome-adblocking.html
https://adguard.com/en/blog/firefox-manifestv3-chrome-adblocking.html
https://doi.org/10.5281/zenodo.15631753
https://www.amazon.com/gp/help/customer/display.html/ref=ap_desktop_footer_cou?ie=UTF8&nodeId=508088
https://www.amazon.com/gp/help/customer/display.html/ref=ap_desktop_footer_cou?ie=UTF8&nodeId=508088
https://www.amazon.com/gp/help/customer/display.html/ref=ap_desktop_footer_cou?ie=UTF8&nodeId=508088
https://www.amazon.com/s?k=
https://www.amazon.com/s?k=
https://gist.github.com/caseywatts/c0cec1f89ccdb8b469b1
https://gist.github.com/caseywatts/c0cec1f89ccdb8b469b1
https://developer.chrome.com/docs/extensions/develop/security-privacy/stay-secure
https://developer.chrome.com/docs/extensions/develop/security-privacy/stay-secure
https://developer.chrome.com/docs/extensions/develop/security-privacy/stay-secure
https://developer.chrome.com/docs/extensions/reference/manifest
https://developer.chrome.com/docs/extensions/reference/manifest
https://developer.chrome.com/docs/webstore/publish
https://developer.chrome.com/docs/webstore/publish
https://developer.chrome.com/docs/webstore/check-review#follow-up_on_rejections_and_takedowns
https://developer.chrome.com/docs/webstore/check-review#follow-up_on_rejections_and_takedowns
https://developer.chrome.com/docs/webstore/check-review#follow-up_on_rejections_and_takedowns
https://developer.chrome.com/docs/webstore/review-process
https://developer.chrome.com/docs/webstore/review-process
https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis
https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis
https://developer.chrome.com/docs/extensions/reference/api/storage#can_extensions_use_web_storage_apis
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3

[25] Chrome For Developers. Get started, 2025. URL https:
//developer.chrome.com/docs/extensions/get-started.

[26] Chrome Webstore. Chrome extensions sitemap, 2025.
URL https://chrome.google.com/webstore/sitemap.

[27] David Collier and Gerardo L Munck. Building blocks
and methodological challenges: A framework for study-
ing critical junctures. In QMMR, 2017.

[28] Thad Dunning. Contingency and determinism in re-
search on critical junctures: Avoiding the" inevitability
framework". In QMMR, 2017.

[29] Benjamin Eriksson, Pablo Picazo-Sanchez, and Andrei
Sabelfeld. Hardening the security analysis of browser
extensions. In ACM SAC, 2022.

[30] Aurore Fass, Dolière Francis Somé, Michael Backes,
and Ben Stock. Doublex: Statically detecting vulnera-
ble data flows in browser extensions at scale. In CCS,
2021.

[31] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and
Sascha Fahl. Stack overflow considered harmful? the
impact of copy&paste on android application security.
In IEEE S&P, 2017.

[32] Ghostery. Chrome’s manifest v3 - improving privacy?,
2025. URL https://www.ghostery.com/blog/manifest
-v3-privacy.

[33] GitHub Security Lab. Attacking browser extensions,
2024. URL https://github.blog/security/vulnerability-r
esearch/attacking-browser-extensions/.

[34] Barney G. Glaser and Anselm L. Strauss. The dis-
covery of grounded theory: Strategies for qualitative
research. In Aldine Publishing Company, 1967.

[35] Google. Generative AI in Search: Let Google do the
searching for you, 2024. URL https://blog.google/prod
ucts/search/generative-ai-google-search-may-2024/.

[36] Google Chrome. Chrome web store, 2025. URL https:
//chromewebstore.google.com/.

[37] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Möller, Yasemin Acar,
and Sascha Fahl. Developers deserve security warn-
ings, too: On the effect of integrated security advice
on cryptographic api misuse. In SOUPS, 2018.

[38] Jaber F. Gubrium, James A. Holstein, Amir B. Mar-
vasti, and Karyn D. McKinney. The sage handbook
of interview research: The complexity of the craft. In
Sage, 2012.

[39] Hacker News. Chrome extensions are tampering with
security headers, 2021. URL https://news.ycombinat
or.com/item?id=27284224.

[40] Hacker News. Chrome users beware: Manifest v3 is
deceitful and threatening, 2023. URL https://news.yco
mbinator.com/item?id=38301801.

[41] Daniel Hausknecht, Jonas Magazinius, and Andrei
Sabelfeld. May i?-content security policy endorsement
for browser extensions. In DIMVA, 2015.

[42] Sheryl Hsu, Manda Tran, and Aurore Fass. What is in
the chrome web store? In AsiaCCS, 2024.

[43] Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayi-
otis Mavrommatis, Niels Provos, Moheeb Abu Rajab,
and Kurt Thomas. Trends and lessons from three years
fighting malicious extensions. In USENIX Security,
2015.

[44] Alexandros Kapravelos, Chris Grier, Neha Chachra,
Christopher Kruegel, Giovanni Vigna, and Vern Pax-
son. Hulk: Eliciting malicious behavior in browser
extensions. In USENIX Security, 2014.

[45] Soroush Karami, Panagiotis Ilia, Konstantinos Solo-
mos, and Jason Polakis. Carnus: Exploring the privacy
threats of browser extension fingerprinting. In NDSS,
2020.

[46] Soroush Karami, Faezeh Kalantari, Mehrnoosh Za-
eifi, Xavier J Maso, Erik Trickel, Panagiotis Ilia, Yan
Shoshitaishvili, Adam Doupé, and Jason Polakis. Un-
leash the simulacrum: Shifting browser realities for
robust extension-fingerprinting prevention. In USENIX
Security, 2022.

[47] Ankit Kariryaa, Gian-Luca Savino, Carolin Stell-
macher, and Johannes Schöning. Understanding users’
knowledge about the privacy and security of browser
extensions. In SOUPS, 2021.

[48] Gerhard Kleining. Umriss zu einer methodologie qual-
itativer sozialforschung. In Kölner Zeitschrift für Sozi-
ologie und Sozialpsychologie, 1982.

[49] Hubert Knoblauch, René Tuma, and Bernt Schnettler.
Videography: Introduction to interpretive videoanaly-
sis of social situations. In Peter Lang, 2014.

[50] Tatiana Kostova and Kendall Roth. Adoption of an
organizational practice by subsidiaries of multinational
corporations: Institutional and relational effects. In
The Academy of Management Journal, 2002.

[51] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexan-
dros Kapravelos, and Nick Nikiforakis. Fingerprinting

https://developer.chrome.com/docs/extensions/get-started
https://developer.chrome.com/docs/extensions/get-started
https://chrome.google.com/webstore/sitemap
https://www.ghostery.com/blog/manifest-v3-privacy
https://www.ghostery.com/blog/manifest-v3-privacy
https://github.blog/security/vulnerability-research/attacking-browser-extensions/
https://github.blog/security/vulnerability-research/attacking-browser-extensions/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://blog.google/products/search/generative-ai-google-search-may-2024/
https://chromewebstore.google.com/
https://chromewebstore.google.com/
https://news.ycombinator.com/item?id=27284224
https://news.ycombinator.com/item?id=27284224
https://news.ycombinator.com/item?id=38301801
https://news.ycombinator.com/item?id=38301801

in style: Detecting browser extensions via injected style
sheets. In USENIX Security, 2021.

[52] Jonathan Lazar, Jinjuan Heidi Feng, and Harry
Hochheiser. Research methods in human-computer
interaction. Morgan Kaufmann, 2017.

[53] Byoungyoung Lee and Young Min Kim. Extending a
hand to attackers: Browser privilege escalation attacks
via extensions. In USENIX Security, 2023.

[54] Heidi M Levitt. Qualitative generalization, not to the
population but to the phenomenon: Reconceptualiz-
ing variation in qualitative research. In Qualitative
psychology, 2021.

[55] Philipp Mayring. Qualitative content analysis. In Fo-
rum: Qualitative Sozialforschung / Forum: Qualitative
Social Research, 2000.

[56] Microsoft. Activex controls, 2021. URL https://learn.
microsoft.com/en-us/cpp/mfc/activex-controls.

[57] Mozilla Developer Network. storage, 2024. URL
https://developer.mozilla.org/en-US/docs/Mozilla/A
dd-ons/WebExtensions/API/storage.

[58] Mozilla Developer Networks. Client-side storage,
2025. URL https://developer.mozilla.org/en-US/
docs/Learn_web_development/Extensions/Client-sid
e_APIs/Client-side_storage.

[59] Mozilla Developer Networks. Content security policy
(csp), 2025. URL https://developer.mozilla.org/en-U
S/docs/Web/HTTP/Guides/CSP.

[60] Mozilla Developer Networks. Example extensions,
2025. URL https://developer.mozilla.org/en-US/docs
/Mozilla/Add-ons/WebExtensions/API/declarativeNe
tRequest#example_extensions.

[61] Mozilla Developer Networks. X-Frame-Options, 2025.
URL https://developer.mozilla.org/en-US/docs/Web
/HTTP/Headers/X-Frame-Options.

[62] Mozilla Developer Networks. X-frame-options, 2025.
URL https://developer.mozilla.org/en-US/docs/Web
/HTTP/Reference/Headers/X-Frame-Options.

[63] Mozilla Firefox. What does review rejection mean to
users?, 2019. URL https://extensionworkshop.com/do
cumentation/publish/what-does-review-rejection-m
ean-to-users/.

[64] Mozilla Firefox. Security over choice, 2021. URL
https://extensionworkshop.com/documentation/publ
ish/add-ons-blocking-process/#security-over-choice.

[65] Mozilla Firefox. Submitting an add-on, 2024. URL
https://extensionworkshop.com/documentation/publ
ish/submitting-an-add-on/.

[66] Mozilla Firefox. Firefox browser add-ons, 2025. URL
https://addons.mozilla.org/en-US/firefox/extensions/.

[67] Mozilla Firefox. Firefox Add-ons, 2025. URL https:
//addons.mozilla.org/api/v5/addons/search/?app=firef
ox&type=extension.

[68] mozilla wiki. Add-ons/reviewers/guide/review deci-
sion, 2024. URL https://wiki.mozilla.org/Add-ons/R
eviewers/Guide/Review_Decision.

[69] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel Von Zezschwitz, and Matthew Smith. "if you
want, i can store the encrypted password" a password-
storage field study with freelance developers. In ACM
CHI, 2019.

[70] Alexandra Nisenoff, Arthur Borem, Madison Picker-
ing, Grant Nakanishi, Maya Thumpasery, and Blase Ur.
Defining “broken”: User experiences and remediation
tactics when ad-blocking or tracking-protection tools
break a website’s user experience. In USENIX Security,
2023.

[71] OWASP Cheat Sheet Series. Http security response
headers cheat sheet, 2025. URL https://cheatsheetseri
es.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sh
eet.html.

[72] OWASP Cheat Sheet Series Team. Browser Extension
Security Vulnerabilities, 2025. URL https://cheatsheet
series.owasp.org/cheatsheets/Browser_Extension_V
ulnerabilities_Cheat_Sheet.html.

[73] Raffaello Perrotta and Feng Hao. Botnet in the browser:
Understanding threats caused by malicious browser
extensions. In IEEE S&P, 2018.

[74] Ritik Roongta and Rachel Greenstadt. From user in-
sights to actionable metrics: A user-focused evaluation
of privacy-preserving browser extensions. In AsiaCCS,
2024.

[75] Sebastian Roth, Lea Gröber, Michael Backes, Katha-
rina Krombholz, and Ben Stock. 12 angry developers-a
qualitative study on developers’ struggles with csp. In
CCS, 2021.

[76] Sebastian Roth, Lea Gröber, Philipp Baus, Katharina
Krombholz, and Ben Stock. Trust me if you can – how
usable is trusted types in practice? In USENIX Security,
2024.

[77] Margrit Schreier. Qualitative content analysis. In Sage,
2014.

https://learn.microsoft.com/en-us/cpp/mfc/activex-controls
https://learn.microsoft.com/en-us/cpp/mfc/activex-controls
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Client-side_APIs/Client-side_storage
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Client-side_APIs/Client-side_storage
https://developer.mozilla.org/en-US/docs/Learn_web_development/Extensions/Client-side_APIs/Client-side_storage
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/CSP
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/declarativeNetRequest#example_extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/declarativeNetRequest#example_extensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/declarativeNetRequest#example_extensions
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/X-Frame-Options
https://extensionworkshop.com/documentation/publish/what-does-review-rejection-mean-to-users/
https://extensionworkshop.com/documentation/publish/what-does-review-rejection-mean-to-users/
https://extensionworkshop.com/documentation/publish/what-does-review-rejection-mean-to-users/
https://extensionworkshop.com/documentation/publish/add-ons-blocking-process/#security-over-choice
https://extensionworkshop.com/documentation/publish/add-ons-blocking-process/#security-over-choice
https://extensionworkshop.com/documentation/publish/submitting-an-add-on/
https://extensionworkshop.com/documentation/publish/submitting-an-add-on/
https://addons.mozilla.org/en-US/firefox/extensions/
https://addons.mozilla.org/api/v5/addons/search/?app=firefox&type=extension
https://addons.mozilla.org/api/v5/addons/search/?app=firefox&type=extension
https://addons.mozilla.org/api/v5/addons/search/?app=firefox&type=extension
https://wiki.mozilla.org/Add-ons/Reviewers/Guide/Review_Decision
https://wiki.mozilla.org/Add-ons/Reviewers/Guide/Review_Decision
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Browser_Extension_Vulnerabilities_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Browser_Extension_Vulnerabilities_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Browser_Extension_Vulnerabilities_Cheat_Sheet.html

[78] Raphael Serafini, Stefan Albert Horstmann, and Alena
Naiakshina. Engaging company developers in security
research studies: A comprehensive literature review
and quantitative survey. In USENIX Security, 2024.

[79] Seraphic Cyber Security. Malicious browser exten-
sions are on the rise, 2025. URL https://seraphicsecuri
ty.com/resources/blog/malicious-browser-extension
s-are-on-the-rise/.

[80] Alexander Sjösten, Steven Van Acker, and Andrei
Sabelfeld. Discovering browser extensions via web
accessible resources. In CODASPY, 2017.

[81] Alexander Sjösten, Steven Van Acker, Pablo Picazo-
Sanchez, and Andrei Sabelfeld. Latex gloves: Protect-
ing browser extensions from probing and revelation
attacks. In NDSS, 2019.

[82] Konstantinos Solomos, Panagiotis Ilia, Soroush
Karami, Nick Nikiforakis, and Jason Polakis. The
dangers of human touch: fingerprinting browser
extensions through user actions. In USENIX Security,
2022.

[83] Konstantinos Solomos, Panagiotis Ilia, Nick Niki-
forakis, and Jason Polakis. Escaping the confines
of time: Continuous browser extension fingerprinting
through ephemeral modifications. In CCS, 2022.

[84] Konstantinos Solomos, Nick Nikiforakis, and Jason
Polakis. Harnessing multiplicity: Granular browser
extension fingerprinting through user configurations.
In ACSAC, 2024.

[85] Dolière Francis Somé. Empoweb: empowering web
applications with browser extensions. In IEEE S&P,
2019.

[86] John Sparrow. Knowledge in organizations: access to
thinking at work. In Sage, 1998.

[87] Stack Overflow. ManifestV3 example using declara-
tiveNetRequest, 2021. URL https://stackoverflow.co
m/a/69177790.

[88] Oleksii Starov and Nick Nikiforakis. Extended track-
ing powers: Measuring the privacy diffusion enabled
by browser extensions. In WWW, 2017.

[89] Oleksii Starov and Nick Nikiforakis. Xhound: Quanti-
fying the fingerprintability of browser extensions. In
IEEE S&P, 2017.

[90] Oleksii Starov, Pierre Laperdrix, Alexandros Kaprave-
los, and Nick Nikiforakis. Unnecessarily identifiable:
Quantifying the fingerprintability of browser exten-
sions due to bloat. In WWW, 2019.

[91] Anselm L. Strauss and Juliet M. Corbin. Basics of
qualitative research: Techniques and procedures for
developing grounded theory. In Sage Publications,
2008.

[92] supermaven. supermaven, 2025. URL https://superm
aven.com/.

[93] TechRadar. How chrome’s manifest v3 will change the
game for ad blockers, 2024. URL https://www.techra
dar.com/pro/how-chromes-manifest-v3-will-chang
e-the-game-for-ad-blockers.

[94] ToS;DR. Amazon, 2025. URL https://tosdr.org/en/ser
vice/190.

[95] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is dif-
ferent: Client-side diversification for defending against
extension fingerprinting. In USENIX Security, 2019.

[96] Ming-Ten Tsai and Kuo-Wei Lee. A study of knowl-
edge internalization: From the perspective of learning
cycle theory. In Journal of Knowledge Management,
2006.

[97] W3C/WebExtensions. webextensions, 2024. URL
https://github.com/w3c/webextensions.

[98] David Waldner. Qualitative causal inference and crit-
ical junctures. In Critical Junctures and Historical
Legacies: Insights and Methods for Comparative So-
cial Science, 2022.

[99] Wikipedia. Computer-assisted qualitative data analysis
software, 2024. URL https://en.wikipedia.org/wiki/Co
mputer-assisted_qualitative_data_analysis_software.

[100] Qinge Xie, Manoj Vignesh Kasi Murali, Paul Pearce,
and Frank Li. Arcanum: Detecting and evaluating the
privacy risks of browser extensions on web pages and
web content. In USENIX Security, 2024.

[101] Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao.
CoCo: Efficient Browser Extension Vulnerability De-
tection via Coverage-guided, Concurrent Abstract In-
terpretation. In CCS, 2023.

https://seraphicsecurity.com/resources/blog/malicious-browser-extensions-are-on-the-rise/
https://seraphicsecurity.com/resources/blog/malicious-browser-extensions-are-on-the-rise/
https://seraphicsecurity.com/resources/blog/malicious-browser-extensions-are-on-the-rise/
https://stackoverflow.com/a/69177790
https://stackoverflow.com/a/69177790
https://supermaven.com/
https://supermaven.com/
https://www.techradar.com/pro/how-chromes-manifest-v3-will-change-the-game-for-ad-blockers
https://www.techradar.com/pro/how-chromes-manifest-v3-will-change-the-game-for-ad-blockers
https://www.techradar.com/pro/how-chromes-manifest-v3-will-change-the-game-for-ad-blockers
https://tosdr.org/en/service/190
https://tosdr.org/en/service/190
https://github.com/w3c/webextensions
https://en.wikipedia.org/wiki/Computer-assisted_qualitative_data_analysis_software
https://en.wikipedia.org/wiki/Computer-assisted_qualitative_data_analysis_software

PID Country Age Gender CompSci
BG

ExtDev
YoE

WebDev
BG

#Extensions
Developed

Chrome Install Counts
(max, min, mean, stddev)

Firefox Install Counts
(max, min, mean, stddev)

P01 Ukraine 32 ♂ None 1 ✓⃝ 1 272 / 272 / 272.0 / 0.0 41 / 41 / 41.0 / 0.0
P02 India 23 ♂ UG 1 ✓⃝ 1 63 / 63 / 63.0 / 0.0 -

P03 Canada 19 ♂ UG* 5 ✓⃝ 8 10,000 / 22 / 4,035.0 /
4,137.7 -

P04 Canada 31 ♂ None 9 ✗ 1 10,000 / 10,000 /
10,000.0 / 0.0 -

P05 U.S.A. 26 ♂ UG 1.5 ✓ 1 3 / 3 / 3.0 / 0.0 -
P06 India 31 ♂ UG 9 ✓⃝ 2 640 / 75 / 357.5 / 282.8 -

P07 Norway 25 ♂ None 5 ✓⃝ 3 3,000 / 473 / 1,375.3 /
1,091.7 45 / 45 / 45.0 / 0.0

P08 Switzerland 34 ♂ UG 1 ✓⃝ 1 413 / 413 / 413.0 / 0.0 -
P09 Bangladesh 28 ♂ DNF 3 ✓⃝ 1 87 / 87 / 87.0 / 0.0 -
P10 India 29 ♀ UG 2 ✓⃝ 1 - 7 / 7 / 7.0 / 0.0

P11 U.S.A. – ♂ UG 5 ✓⃝ 2 - 2,682 / 317 / 1,499.5 /
1,186.5

P12 Italy 47 ♂ UG 3 ✓⃝ 1 - 1,837 / 1,837 / 1,837.0 /
0.0

P13 Germany – ♂ UG 2 ✓⃝ 1 744 / 744 / 744.0 / 0.0 136 / 136 / 136.0 / 0.0

P14 Japan 29 ♂ UG 3 ✓⃝ 2 2,000 / 1,000 / 1,500.0 /
500.0 -

P15 Taiwan 43 ♂ DNF 3 ✓⃝ 1 3,000 / 3,000 / 3,000.0 /
0.0 -

P16 Australia 27 ♂ UG 4 ✓⃝ 1 10,000 / 10,000 /
10,000.0 / 0.0 876 / 876 / 876.0 / 0.0

P17 Israel 27 ♂ DNF 7 ✓ 7 100,000 / 1,000 /
17,714.3 / 33,356.3

5,945 / 40 / 1,447.4 /
2,184.5

P18 Lithuania 29 ♂ UG 5 ✓⃝ 1 5,000,000 / 5,000,000 /
5,000,000.0 / 0.0

203,601 / 203,601 /
203,601.0 / 0.0

P19 Germany 56 ♂ PG 20 ✓⃝ 3 800,000 / 1,000 /
300,500.0 / 399,500.0

10,000 / 4,766 / 7,383.0 /
3,617.0

P20 India 40 ♀ PG 3 ✓⃝ 1 10,000 / 10,000 /
10,000.0 / 0.0 -

P21 New Zealand 57 ♂ UG 9 ✓⃝ 1 70,000 / 70,000 /
70,000.0 / 0.0

9,077 / 9,077 / 9,077.0 /
0.0

Table 2: Demographics of our interview participants. BG: Background, UG: Studied or *currently studying Computer Science in
Under Graduate, PG: Post Graduate, DNF: Did not finish/Dropped out of college, YoE: Year(s) of experience, ✓⃝: Currently
working in Web Development, ✓: Prior Web development experience, ✗: No Web development experience, ♀: Female, ♂: Male

Read Task
Description

Familiarity
with Task?

Prior
Experience?

Defined
Solution Strategy? Implementation

Works?

Solution
Works?

End

Yes Yes Yes Yes

Yes

Help
Required?

No No No No

Ask
Interviewer

External
Knowledge

Previous
Extension(s)

Yes YesYes

IDE Plugins Stack
Overflow

ChatGPT Official
Docs

Other Web
Content

START

Figure 3: Generic interaction and workflow diagram demonstrating the participants’ sequential actions during the coding tasks.

	Introduction
	Technical Background
	Related Work
	Research on Browser Extensions
	Developer-centered Security Studies

	Methods
	Semi-structured Interview
	Coding Tasks
	Sampling & Recruitment
	Qualitative Data Analysis
	Limitations

	Study Results
	Participants' Characteristics
	Coding Tasks
	Task 1: Store Address Data
	Task 2: Check Price On Amazon
	Permission-related Flags

	S&P Threats and Awareness
	S&P Practices & Developmental Patterns

	Developer-External Influences on S&P
	Conclusion and Call to Action

