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Abstract. JavaScript is a browser scripting language initially created to en-

hance the interactivity of web sites and to improve their user-friendliness. How-

ever, as it o�oads the work to the user’s browser, it can be used to engage in

malicious activities such as Crypto Mining, Drive-by Download attacks, or redi-

rections to web sites hosting malicious software. Given the prevalence of such

nefarious scripts, the anti-virus industry has increased the focus on their de-

tection. The attackers, in turn, make increasing use of obfuscation techniques,

so as to hinder analysis and the creation of corresponding signatures. Yet these

malicious samples share syntactic similarities at an abstract level, which enables

to bypass obfuscation and detect even unknown malware variants.

In this paper, we present JaSt, a low-overhead solution that combines the ex-

traction of features from the abstract syntax tree with a random forest classi�er

to detect malicious JavaScript instances. It is based on a frequency analysis of

speci�c patterns, which are either predictive of benign or of malicious samples.

Even though the analysis is entirely static, it yields a high detection accuracy of

almost 99.5% and has a low false-negative rate of 0.54%.

1 Introduction

Information Technology is constantly under threat with the amount of newly found

malware increasing permanently: over 250,000 new malicious programs are registered

every day [11]. Moreover, our Internet-driven world enables malware to rapidly infect

victims everywhere, anytime (e.g., Mirai [26], NotPetya [27]). Currently, the most vi-

cious attacks are the so-called crypto trojans (e.g., WannaCry [28]), which often use

JavaScript as a payload in the �rst stage of the infection of the victim’s computer. This

plethora of new attacks renders manual analysis impractical: defenders remedy this

situation by automating the analysis of potentially malicious code. As a consequence,

new alternatives based on machine learning algorithms are being explored to obtain

a better understanding of complex data collected from various systems, thereby auto-

matically detecting and analyzing new malicious variants [16, 19, 30, 31].



Many malware families use methods of script obfuscation to evade detection by

classical anti-virus signatures and to impose additional hurdles to manual analysis.

As a result, analysis tools and techniques constantly need improvement to be able to

recognize these obfuscated patterns and to mitigate the threats. A possible approach

to detect malicious obfuscated JavaScript relies on lexical or syntactic analyses, which

enable an elimination of the arti�cial noise, e.g., introduced by identi�er renaming,

created by the attacker while using these evasion methods. While at a textual level, an

accurate detection of malicious documents can be foiled by the use of obfuscation, pro-

grammatic and structural constructs can still be identi�ed. Therefore, using the way

in which lexical (e.g., keywords, identi�ers, operators) or syntactic (e.g., statements,

expressions, declarations) units are arranged in a given JavaScript �le provides valu-

able insight to capture the salient properties of the code and hence to identify speci�c

and recurrent malicious patterns. Approaches that use lexical [18, 21, 29] or syntactic

units derived from the Abstract Syntax Tree (AST) [7,9,17] to analyze new variants of

malicious code have already been proposed. We choose a syntactic approach over the

lexical one, as the AST contains more information than the lexical units, allowing us

to leverage grammar information for an improved analysis.

In this paper, we present an advanced method based on an AST-level analysis to au-

tomatically classify JavaScript samples containing obfuscated code. This implementa-

tion responds to the following challenges: resilience to common obfuscation transfor-

mations, practical applicability, and robustness against previously presented pollution

attacks. We address these challenges by proposing a methodology to learn and recog-

nize speci�c patterns either typical of benign or of malicious JavaScript documents.

The key elements of JaSt are the following:

– Fully Static AST-Based Analysis: Our system bene�ts from the AST to extract syn-

tactic features from JavaScript �les. Being entirely static, it is also able to analyze

samples whose behavior is time- or environment-dependent [25].

– Extraction of N-Grams Feature: Using the syntactic features, patterns of length n,

namely n-grams, are built and their frequency is analyzed. We �nd that these di�er

signi�cantly between benign and malicious samples, allowing us to distinguish

them. This approach is resistant to common obfuscation transformations since

the intermediate representation used is close to the semantics of the code.

– Accurate Detection of Malicious JavaScript: Based on our n-gram approach, apply-

ing o�-the-shelf supervised machine learning tools can be used to reliably di�er-

entiate benign from malicious JavaScript �les.

– Comprehensive Evaluation: We evaluated our system in terms of detection accu-

racy, false-positive and false-negative rates, temporal stability, and performance

on an extensive dataset composed of 105,305 current and unique JavaScript sam-

ples found in the wild: 85,059 malicious and 20,246 benign. It makes accurate pre-

dictions (with a detection accuracy of almost 99.50% on our sample set) and has

a low false-negative rate of 0.54% which is more than ten times less than other

state-of-the-art systems.

The remaining paper is organized as follows. The implementation of JaSt is de-

scribed and justi�ed in Section 2. The detection results as well as the throughput are



analyzed in Section 3 and further discussed in Section 4. Finally, Section 5 presents

some related work while Section 6 concludes the paper.

2 Methodology

The architecture of our JavaScript detection system consists of a feature-extraction

part and learning components, as shown in Figure 1. First, a static analysis of JavaScript

documents is performed, extracting in particular syntactic units. Then, substrings of

length n, namely n-grams, are produced and their frequency is used as input to the

learning components. These components are used to train a classi�er or update an ex-

isting model with the aim of distinguishing benign from malicious JavaScript samples.

In the following section, we discuss the details of each stage in turn.

Fig. 1: Schematic depiction of JaSt

2.1 Syntactic Analysis of JavaScript Documents

The choice of a syntactic analysis to detect malicious JavaScript instances is moti-

vated by its resilience to common obfuscation transformations. At a textual level, an

accurate discrimination between malicious and benign documents can be foiled by

this evasion method, but programmatic and structural constructs are still identi�able.

Moreover, this parsing process provides a certain level of code abstraction, ignoring,

for example, the variable names to consider them as Identi�er, skipping blank spaces or

comments. Therefore, using the way syntactic units (e.g., statements, expressions, dec-

larations) are arranged in a given JavaScript �le provides valuable insight to capture

the salient properties of the code and hence to identify speci�c and recurrent mali-

cious (or benign) patterns. The syntactic analysis is performed by the state-of-the-art

open source JavaScript parser Esprima [10], which takes a valid JavaScript sample as

input, produces an ordered tree describing the syntactic structure of the program (also

known as Abstract Syntax Tree (AST)) and traverses it depth-�rst post-order, before

extracting the corresponding syntactic units. Figure 2 illustrates the parsing process,

where the malicious entity from Figure 2a is transformed into an AST (Figure 2b),

whose traversal gives a sequence of syntactic units (Figure 2c).
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(a) Malicious JavaScript example from [30]

(b) AST produced from (a)

Description Symbolic name Value

Identi�er Identi�er 15

ThisExpression Expression 0

Literal Literal 3

MemberExpression Expression 0

Literal Literal 3

CallExpression Expression 0

VariableDeclarator Declarator 12

VariableDeclaration Declaration 4

Program Program 8

(c) Syntactic units extracted from (b)

Fig. 2: Extraction of AST-based units from a JavaScript sample

Overall the Esprima parser can produce 69 di�erent syntactic entities ranging from

FunctionDeclaration to ImportDefaultSpeci�er. For performance reasons, a simpli�ca-

tion of the list of syntactic units returned by the parser is performed. It consists in

grouping together elements with the same abstract syntactic meaning (e.g., Function-
Declaration and VariableDeclaration are both referred to as Declaration, while ForState-
ment and WhileStatement are both referred to as Statement), also considering one-

element families if they could not be grouped with other entities

(e.g., Identi�er, Program). It enables a reduction of the number of di�erent units from

69 to 19, while still preserving their syntactic meaning, as each element is analyzed

within its context, using n-grams feature.

2.2 N-Grams Model

To identify speci�c patterns in JavaScript documents, a �xed-length window of n sym-

bols is moved over each syntactic unit previously extracted, so as to get every sub-

sequence of length n, namely n-grams, at each position. As shown in the literature,

this is a generic and e�ective means for modeling reports [20–22, 29, 32–34].

The use of n-grams feature enables a representation of how these syntactic units

were originally arranged in the analyzed JavaScript �le. Therefore, reports sharing

several n-grams with the same frequency present similarities with one another, while

reports with di�erent n-grams have a more dissimilar content. As a consequence, an-

alyzing the frequency of these short patterns provides valuable insights to determine

if the sample is either benign or malicious. To be able to compare the frequency of

all n-grams appearing in several JavaScript inputs, a vector space is constructed such

that each n-gram is associated with one dimension, while its corresponding frequency

is stored at this position in the vector R. For this mapping process, not all possible

n-grams are considered, so as to limit the size of the vector space (initially of 19
n



Table 1: Comparison between the number of all possible n-grams versus the number

of n-grams extracted

N-grams #All possible n-grams #N-grams considered

N = 1 19 17

N = 2 361 114

N = 3 6,859 570

N = 4 130,321 2,457

N = 5 2,476,099 8,025

according to the length n of n-grams chosen), which has a direct impact on the per-

formance. Besides, not all n-gram combinations make sense, e.g., as the root of the

AST, the Program unit can only be present once. Therefore, a set S containing n-grams

preselected based on their number of occurrences in our dataset is created. For this se-

lection, the suitability criteria de�ned by Wressnegger et al. [34] were considered: the

perturbation, as the expected ratio of n-grams in a benign sample that are not part of

the training data, and the density, as the ratio of the number of unique n-grams in the

dataset to the number of all possible n-grams. In particular, we aimed at signi�cantly

reducing the density of our dataset, while keeping an extremely low perturbation so

as to limit the number of false-positives induced by unknown n-grams in benign data.

This was achieved by only considering the n-grams appearing in our dataset (knowing

that currently unknown n-grams can extend the list of n-grams currently considered),

which enables a feature reduction of more than 90% for 3-, 4-, and 5-grams, as shown

in Table 1.

Formally, the previous vector R is de�ned using the set S of n-grams considered

and the set S ′ = (xi )i ∈J1, |S ′ |K of JavaScript samples to be analyzed such as:

RT = {r1
T, ..., r |S ′ |

T}

knowing that ∀i ∈ J1, |S ′ |K, ri = ϕ(xi )

and ϕ : xi −→ (ϕn(xi ))n∈S

with ϕn(xi ) the frequency of the n-gram n in the report xi .

As a consequence, the ϕ function maps a JavaScript �le xi to the vector space R|S|

such that all dimensions associated with the n-grams contained in the set S are set to

their frequency. To avoid an implicit bias on the length of the reports, the frequencies

are normalized, such that: ∀i ∈ J1, |S ′ |K, | |ri | | = | |ϕ(xi )| | = 1. The frequency vector R
(de�ned as RT = (ri )i ∈J1, |S ′ |K

T
) is then used as input to the learning components.

2.3 Learning and Classi�cation

The learning-based detection completes the design of our system. Before predicting

if a given JavaScript sample is either benign or malicious, the classi�er has to be



trained on a representative, up-to-date, and balanced set of both benign and malicious

JavaScript �les. Therefore, a model is initially built using the vectorial representation

RT = (ri )i ∈J1, |S ′ |K
T
, presented in Section 2.2, of the �les S ′ to be classi�ed. This vector

is furthermore used to update an old model with newer JavaScript samples, without

having to train the classi�er from scratch again.

We empirically evaluated di�erent o�-the-shelf classi�ers (Bernoulli naive Bayes,

multinomial naive Bayes, support vector machine (SVM), and random forest) and de-

termined that random forest yielded the best results. Contrary to the two naive Bayes

algorithms, random forest does assume independence between the attributes, leading

to a higher detection accuracy. It is a meta estimator which combines the predictions

of several decision trees on various sub-samples of the dataset: for each tree predictor,

an input is entered at the top and as it traverses down the tree, the data is bucketed

into smaller and smaller sets. Therefore the whole forest provides predictions more

accurate than those of a single tree [31] and controls over�tting, as it classi�es an

unknown instance according to the decision of the majority of the tree predictors [4].

JaSt is implemented in Python and its Scikit-learn implementation of random for-

est is used to classify unknown data [23]. This Python module integrates a collection

of state-of-the-art tools and machine learning algorithms for data mining and data

analysis, and provides highly extensible implementations controlled by several param-

eters (e.g., number of trees in a forest, number of features considered). To optimize the

predictions of our learning-based detection, the tuple of hyperparameters yielding an

optimal model (that minimizes a prede�ned loss function on an independent dataset)

has been determined. Our independent dataset, which was provided by the German

Federal O�ce for Information Security (BSI) and labeled according to the protocol

described in Section 3.1, contains 17,500 unique benign samples, and as many mali-

cious ones. This way, it has a balanced distribution and avoids any over�tting. First,

random search has been performed with 5-fold cross-validation on this dataset, sam-

pling a �xed number of parameter settings from the speci�ed distributions [3]. This

method enabled us to narrow down the range of possibilities for each hyperparameter

and in a second step, to concentrate the search on a lower number of tuples. Indeed,

grid search has been used on the previous results, exhaustively testing all the resulting

combinations with cross-validation, to tune the optimal set of hyperparameters.

The tuple of hyperparameters yielding an optimal model on our independent data-

set is presented hereafter. As far as features are concerned, 4-grams have been selected

because the length four provided the best trade-o� between false-positives and false-

negatives. As for the forest, it contains 500 trees having each time a maximum depth of

50 nodes. When looking for the best node’s split, d
√
2, 457e = 50 features are considered

and the Gini criterion is used to measure the quality of a split, based on the Gini

impurity [8]. These hyperparameters have been selected because their combination

leads to the best trade-o� between performance and accuracy.

3 Comprehensive Evaluation

In this section, we outline the results of our extensive evaluation. The success of our

learning-based approach comes from the previous well-considered tuple of hyperpa-



rameters, and a high-quality dataset. This was con�rmed by the high detection accu-

racy obtained on several unknown datasets. Based on the accuracy of our system’s

predictions, a study of the temporal evolution of JavaScript �les over one year was

performed. JaStwas also compared to state-of-the-art approaches where its extremely

low false-negative rate is without precedent. We also evaluated JaSt in terms of run-

time performance.

3.1 Experimental Datasets

The experimental evaluation of our approach rests on an extensive dataset mainly

provided by the German Federal O�ce for Information Security (BSI). This dataset,

which comprises 105,305 unique (based on their SHA1 hash) JavaScript samples, is in

particular composed of 20,246 benign and 85,059 malicious JavaScript �les (Table 2)

between 100 bytes and 1 megabyte, with a total size of more than 3.6 gigabytes. Our

malicious samples mainly correspond to JavaScript extracted from emails, one of the

most common and e�ective way to spread JScript-Loader, knowing that a double-click

on the attachment is by default su�cient to execute it on Windows hosts, leading

to e.g., drive-by download or ransomware attacks. JavaScript as infection vector is

particularly relevant and powerful here since it is especially prone to obfuscation and

therefore enables the attackers to build a unique copy of the malicious attachment for

each recipient, foiling classical anti-virus signatures. These samples have been labeled

as malicious based on a score obtained after having been tested by twenty di�erent

anti-virus systems, the malware scanner of the BSI, and a runtime-based analysis. As

for the benign �les, they were extracted among others from Microsoft products (e.g.,

Microsoft Exchange 2016 and Microsoft Team Foundation Server 2017), the majority

of which are obfuscated, which enabled us to ensure that JaSt does not confound

obfuscation and maliciousness, but leverages grammar information for an accurate

distinction between benign and malicious inputs. For our dataset to be more up-to-date

and representative of the JavaScript distribution found in the wild, we also included

some open source games written in JavaScript, web frameworks and the source code

of Atom [1], tested either using the previous protocol or directly downloaded from

the developers’ web page. These extra samples extend our dataset with some new,

sometimes unusual or speci�c (e.g., games) coding styles, which shows again that our

system does not confound unseen nor unusual syntactic structures with maliciousness.

Reasons for not including any web JavaScript extracted from HTML documents in this

dataset are discussed in Section 4.2.

3.2 Detection Performance

In our �rst experiment, we studied the detection performance of JaSt in terms of true-

positive and true-negative rates (correct classi�cation of the samples, either as benign

or as malicious), false-positive and false-negative rates (misclassi�cation of the sam-

ples, malicious instead of benign, or the opposite), and overall detection accuracy. The

experimental protocol is the following: 3,500 unique JavaScript �les were each time

randomly extracted from the email dataset (malicious) and Microsoft dataset (benign),

and were used to build a balanced model. The remaining samples were considered



Table 2: JavaScript dataset description

JS type Creation #JS Label Obfuscated

Emails 2017-2018 85,059 Malicious y

Microsoft 2015-2018 17,668 Benign y

Games N/A 2,007 Benign n

Web frameworks N/A 434 Benign N/A

Atom 2011-2018 137 Benign n

Table 3: Detection accuracy of JaSt

JS type #Misclassi�ed #Correctly classi�ed Detection accuracy

Emails 443 81,116 99.46%

Microsoft 71 14,097 99.50%

Games 10 1,997 99.52%

Web frameworks 4 430 99.03%

Atom 1 136 98.98%

Average benign 86 16,660 99.48%

unknown and were used to measure the detection performance. We repeated this pro-

cedure �ve times and the averaged results are shown in Table 3. JaSt was able to

correctly classify 99.48% of our benign dataset, while still detecting 99.46% of the ma-

licious email samples. As both these benign and malicious �les were, for the most part,

obfuscated, this demonstrates the resilience of our system to this speci�c form of eva-

sion. More importantly, it shows that JaSt does not confound obfuscation with mali-

ciousness, and plain text with benign inputs, but could use di�erences between benign

and malicious obfuscation at a syntactic level to distinguish benign obfuscated from

malicious obfuscated �les. Indeed, while the former is used to protect code privacy and

intellectual property, the latter aims at hiding its malicious purpose without speci�c

regard to the performance. Furthermore, our system o�ers a very high true-negative

rate for the web frameworks, the source code of JavaScript games and of Atom, even

though these sample families were not present in the training set. The possible transfer

of an email-based model to web samples is further discussed in Section 4.2.

Both the false-positive (0.52%) and the false-negative (0.54%) rates are very low for

JaSt indicating that, based on a frequency analysis of their 4-grams, our classi�er is

able to make an accurate distinction between benign and malicious samples almost

99.5% of the time. We achieved this optimal trade-o� between the false-positives and

the false-negatives by using Youden’s J statistic, where J is de�ned as [24, 38]:

J = sensitivity + speci�city − 1 = TPR − FPR



This index corresponds to the area beneath the curve subtended by a single operating

point. Its maximum value is used as a criterion for selecting the optimal cut-o� point

between false-positives and false-negatives. In our case, Youden’s index was deter-

mined with 5-fold cross validation on the independent dataset presented in Section 2.3.

The value we got is 0.29, which means that a sample will be considered malicious if

the probability of it being malicious is above 0.29, according to our random forest clas-

si�er. Figure 3 presents the evolution of the detection performance when the value of

Youden’s index varies between 0.19 and 0.95. The best trade-o� between false-positive

and false-negative rates is obtained for 0.29, while the maximum detection accuracy is

obtained for a threshold of 0.25. The value 0.23 is equally interesting, as it represents a

reduction of the sharp false-positive rate decline while retaining a low false-negative

rate and an extremely high detection accuracy of 99.49%. As for trading an extremely

low false-positive rate for a higher false-negative rate, it downgrades the overall de-

tection accuracy extremely rapidly. For the rest of the paper, if no other indication is

given, we consider an index of 0.25.

Fig. 3: Detection performance, depending on Youden’s index

3.3 JavaScript Temporal Evolution

In our second experiment, we focused on the temporal evolution of malicious email-

JavaScript received from January 2017 to January 2018. For each month, two steps

were performed:



Fig. 4: Temporal evolution of the detection accuracy, depending on Youden’s index

– The labels of the JavaScript samples collected on the current month were con-

sidered unknown. The model built in the previous months (the �rst model being

created in January 2017) was used to classify these JavaScript instances;

– The true labels (obtained from other sources such as AV) of the JavaScript samples

collected on the current month were used to build a new model, including all the

samples of the previous months.

As a consequence, the samples from January 2018 were classi�ed with a model initially

built in January 2017 and extended each month, until December 2017 inclusive, with

new and up-to-date malicious as well as benign JavaScript instances.

Figure 4 shows the performance of the random forest classi�er in terms of de-

tection accuracy –de�ned by the proportion of samples correctly classi�ed, either as

benign or as malicious– for three di�erent thresholds. The prediction decline in June

and to a lesser extent in July only depends on malicious JavaScript misclassi�cations,

the mean false-positive rate over the whole period being 0.21%. The decrease gets

more important when the threshold increases, which makes sense as it represents the

probability cut-o� to consider that a sample is malicious. As a comparison, we re-

placed the complete relearning of a model each month, by an update function adding

100 new trees to the forest built in the previous months. As both experiments pre-

sented the same decline in June and July, we concentrated our analysis on these two

months to understand where the major changes at a sample level originated from. In-

deed, a manual inspection of the samples from June and July, combined with the use

of JSinspect [14] –a project built on the AST to detect structurally similar code– con-

�rmed that the misclassi�cations came from several big JavaScript waves, each wave

(also referred to as family) containing samples with the exact same AST-based struc-



Table 4: Insights into the malicious samples collected between 2017 and 2018

Months #Malicious #Malicious big waves
4

Part of a big wave Part of a FN big wave

Feb 4,894 8 66.92% 0%

Mar 4,838 4 28% 0%

Apr 4,883 4 30.04% 0%

May 4,922 4 44.64% 0%

Jun 4,987 6 73.73% 39.74%

Jul 4,831 6 53.88% 7.32%

Aug 6,536 6 64.35% 0%

Sep 592 0 0% 0%

Oct 3,610 1 8.8% 0%

Nov 120 0 0% 0%

Dec 419 0 0% 0%

Jan 53 0 0% 0%

ture. As a matter of fact, the attackers abused obfuscation to send a unique copy of the

malicious JavaScript email attachment to each recipient. In this speci�c case, they only

randomized the function and variable names for each JavaScript �le they produced:

since their SHA1 hash is di�erent, we did not consider them as duplicate, but they

are identical at the AST level (variable/function names are represented by an Identi�er
node). In June, we can notice in particular the appearance of four such misclassi�ed

waves with respectively 213, 355, 578, and 1,049 �les in them. If one sample of one of

the previous families is misclassi�ed, so is the entire wave, which yielded in our case

a high number of false-negatives. A similar phenomenon was observed in July, where

two waves respectively containing 107 and 354 samples were received and misclassi-

�ed. These six speci�c waves were admittedly composed of malicious samples only,

but the classi�er labeled each one of them as benign with a probability over 78%. We

could have observed the inverse phenomenon, where one sample of a malicious wave

would have been recognized as malicious, and therefore the entire wave too (as a wave

only contains samples with the exact same AST-based structure), which would have

yielded a high number of true-positives (depending on the wave’s size). Table 4 indi-

cates that it is globally not the case since the biggest malicious families were rather

found in June and July. Besides, we only had big wave (over 300 samples) misclassi-

�cations in June and July, the other waves were being correctly �agged as malicious

with a probability over 50% (in general even over 75%).

As a second experiment, Figure 5 presents the evolution of the detection accuracy

when the month used to build the initial model varies, the rest of the experiment

staying the same. As previously, and for the reasons mentioned before, a decline was

observed in June and July. In particular, the di�erences in terms of detection accuracy

in June between a model �rst built in April and the other ones, or between the di�erent

4
We de�ne a big wave as a wave containing more than 300 syntactically similar samples



Fig. 5: Temporal evolution of the detection accuracy, depending on the training month

models in July, highlight the presence of these big JavaScript waves (through correct

detections or on the contrary misclassi�cations).

This way, June and July both misclassi�ed several big waves of syntactically sim-

ilar JavaScript samples, with in particular a wave containing more than 1,000 sam-

ples, therefore accounting for more than a �fth of the samples collected in June. Even

though it yielded a high number of false-negatives, this is avoidable with a model more

representative of the distribution found in the wild. As a matter of fact, another sam-

pling of the exact same JavaScript �les gave in Section 3.2 a false-negative rate of 0.54%

(threshold: 0.29, with an equally low false-positive rate of 0.52%). It was not obtained

by chance, especially since the training set was signi�cantly smaller, but through mod-

els containing more entropy in their randomly-selected samples, in comparison to a

few syntactically similar JavaScript waves.

3.4 Comparison with Other Approaches

Table 5 presents a quantitative comparison with closely related work. Cujo and PJScan

both used lexical units combined with an n-gram analysis to detect malicious JavaScript

respectively embedded in web pages and in PDF documents. As for Zozzle, it used

features extracted from the AST to identify malicious JavaScript samples. We discuss

their approach further in Section 5. Table 5 shows that JaSt is heavily optimized to

detect malicious JavaScript instances with its low false-negative rate of 0.54% (thresh-

old 0.29), which is between 10 and 28 times lower than the other tools proposed thus

far. Compared to Cujo and Zozzle, who also used the results of a dynamic analy-

sis to detect malicious JavaScript samples more accurately, our approach outperforms

these concepts. Like the majority of anti-virus systems, they rather traded a low false-



Table 5: Accuracy comparison with closely related work

Project FP rate FN rate Static Dynamic

JaSt 5.2E-3 5.4E-3 -

Cujo [29] 2.0E-5 5.6E-2

PJScan [21] 1.6E-1 1.5E-1 -

Zozzle [7] 3.1E-6 9.2E-2

positive rate for a higher false-negative rate. Indeed, as indicated by Curtsinger et al.,

given the number of URLs on the web, a false-positive rate of 5% is considered ac-

ceptable for static analysis tools, but rates even 100 times lower are not acceptable for

in-browser detection. Besides, the low false-positive rate of Zozzle has to be taken

with a grain of salt, since this tool rather aims at detecting benign samples. For this

reason, it was tested on more benign than malicious �les (1.2 million versus a few thou-

sand) which lowered the false-positive rate at the expense of the false-negatives. JaSt

on the other hand is designed to detect malicious JavaScript �les, while still retaining

a low false-positive rate of 0.52%.

As mentioned in Section 3.2, Youden’s index can furthermore be used to shift false-

positive and false-negative rates, according to the system’s use case and dataset. There-

fore, to perform further comparisons with Cujo and Zozzle, we increased the value

of Youden’s index, so as to lower our false-positive rate. With a threshold of 0.7, our

system already had a lower false-positive rate than Cujo’s, while retaining a lower

false-negative rate (Table 6a). To ensure that these results were not coming from a

lack of benign JavaScript samples, we extracted 119,233 unique benign JavaScript �les

from Alexa top 10k web sites and classi�ed them as previously (Table 6b). Our model

did not have such a low false-positive rate on these samples as before since we were us-

ing an email-based model to classify web-JavaScript (this concept is further discussed

in Section 4.2). Nevertheless, with a Youden’s index of 0.8, the false-positive rate of

JaSt on the Alexa dataset was lower than Cujo’s, while still retaining a lower false-

negative rate. As for Zozzle, a threshold of 0.8 on our dataset provided both a better

false-positive and a better false-negative rate. As previously, we also performed this

comparison on the samples extracted from Alexa top 10k. With a threshold of 0.9, we

had a false-positive rate of 6.71E-4% (standing for 0.8 false-positive, averaged over 5

runs) –admittedly a little superior to Zozzle’s– but still a lower false-negative rate

(Table 6).

Several parameters are responsible for the higher detection accuracy of JaSt com-

pared to Cujo and Zozzle. First, we did not trade a very low false-positive rate for a

higher false-negative rate, which enables our system to accurately detect benign sam-

ples with an accuracy of 99.48% and 99.46% for malicious ones. As indicated in Figure 3,

an extremely low false-positive rate signi�cantly degrades the classi�er’s accuracy.

Besides, maximizing the detection accuracy also corresponds to the better trade-o�

between false-positives and false-negatives. Furthermore, the choice of our random



Table 6: Accuracy comparison according to Youden’s index

Threshold FP rate FN rate

0.7 1.19E-5 2.16E-2

0.8 0 2.91E-2

0.9 0 4.34E-2

(a) With our dataset

Threshold FP rate FN rate

0.7 1.26E-4 -

0.8 1.68E-5 -

0.9 6.71E-6 -

(b) With samples from Alexa top 10k

forest classi�er has an impact on the detection performance, since it performed better

than Bernoulli naive Bayes and SVM –respectively chosen for Zozzle and for Cujo–

on our dataset. Last but not least, our syntactic analysis also has an impact on the de-

tection accuracy e.g., Cujo is based on a lexical analysis, which does not perform as

well as an AST-based one, because lexical units lack context information.

3.5 Run-Time Performance

The run-time performance of our system was tested on a commodity PC with a quad-

core Intel(R) Core(TM) i3-2120 CPU at 3.30GHz and 8GB of RAM. The experiments

have each time been performed 5 times, on 5 di�erent sets randomly selected. The

processing time for all stages of our method on 500 unique JavaScript samples (half

of which are benign, the other half being malicious), representing 14.9 megabytes, is

shown in Table 7. The most time-consuming operation corresponds to the parsing of

the JavaScript �les with the open source tool Esprima, written in JavaScript, which

accounts for more than 85% of the overall detection time. In comparison, the produc-

tion of all 4-grams and the creation of a vector of 2,457 dimensions, containing the

frequency of each of the previous 4-grams, is quite fast (12.72% of the time). As for the

performance of the random forest classi�er, it mainly depends on the throughput of

Python Scikit-learn algorithms and represents in average less than 1% of the process-

ing time. It includes building a forest of 500 trees (c.f. Section 2.3) using the previous

samples, updating the previous model by adding 100 new trees to the forest –which is

more than 4 times faster than creating the original model– and testing the model on

unknown samples, the most important part of the detection system and also clearly

the fastest. In total, JaSt extracted the syntactic units of 500 JavaScript samples, con-

structed 2,457 di�erent 4-grams and computed each frequency for all input �les (rep-

resenting 1,228,500 frequencies), built a model based on the previous frequency vector

and updated it, before using it to classify 500 unknown JavaScript documents in less

than 2 minutes. Compared to PJScan –implemented in C with its own C library to

classify JavaScript entities–, which can analyze a PDF document in 0.0032 seconds,

our approach is slower. In compensation, the accuracy of our predictions is signi�-

cantly better (Section 3.4), which primes as the throughput could always be improved

by parallelization for a deployment in the wild.

To have a closer look into the performance of our system, we used the models built

in Section 3.2 to classify our di�erent datasets. Table 8 presents the throughput of JaSt



Table 7: Processing time for 500 JavaScript samples for di�erent stages of our system

Parser N-grams analysis Learner Updater Classi�er Total

Total 96.55s 14.43s 1.79s 0.41s 0.26s 113.43s

Percentage 85.12% 12.72% 1.57% 0.36% 0.23% 100%

Table 8: Throughput characteristics of JaSt

#Samples Time Size Files per second Throughput

Emails 85,059 20,247.08 s 2.5 GB 4.20 0.12 MB/s

Microsoft 17,668 6,049.21 s 1.1 GB 2.33 0.18 MB/s

Games 2,007 370.52 s 50.9 MB 5.45 0.14 MB/s

Web frameworks 434 94.39 s 13.8 MB 4.65 0.15 MB/s

Atom 137 30.70 s 5.4 MB 5.70 0.18 MB/s

All �les 105,305 26,791.90s 3.67 GB 3.93 0.14 MB/s

depending on the type of JavaScript �le to be detected. The run-time performance is

closely related to the number of samples to be analyzed: bigger datasets will have a

lower per-�le-throughput as smaller ones, since the 4-grams frequencies of all �les

have to be kept in the bu�er before being used for classi�cation purpose. On average,

JaSt analyzes 0.14 MB/s, which is comparable to the 0.2 MB/s of Zozzle for the same

amount of features as ours, while still retaining a higher detection accuracy (99.46%

compared to 99.20% for Zozzle).

4 Discussion

In this section, we �rst examine the limitations of our learning-based approach, fo-

cusing on evasion techniques that might be used by an attacker. We then discuss to

what extent an email-based model is able to detect web samples, such as exploit kits

provided by Kafeine DNC
5

or JavaScript extracted from Alexa
6
.

4.1 Limitations and Further Evasion Techniques

All learning-based malware detection tools will fail to detect some attacks, such as

malicious instances not containing any of the features present in the training set. As

a matter of fact, machine learning does not always take into account the concept of

uncertainty involved in the prediction task [2], and relies in particular on statistical

5
Malware don’t need Co�ee, https://malware.dontneedcoffee.com

6
Alexa top sites, http://www.alexa.com/topsites

https://malware.dontneedcoffee.com
http://www.alexa.com/topsites


assumptions about the distribution of the training data to construct models, which are

then used for future analyses. As a consequence, adversaries could also exploit these

limitations to disrupt the analysis process, not to mention engaging malicious activi-

ties that could fail to be detected [13]. Our approach is resilient to attacks bene�tting

from the adaptive aspect of machine learning to design training data that will cause the

learning system to produce models misclassifying future inputs, as the system never

uses unknown input data as a training set. Attackers could rather try to manipulate a

malicious sample to �nd a variant, preserving its maliciousness, but which would be

classi�ed as benign [15, 36]. Evasion is made somewhat more di�cult because of the

absence of a classi�cation score. In particular, our system does preserve a lower false-

negative rate than Zozzle when confronted to the Jshield samples [6] (80.14% ver-

sus 36.7%), admittedly tailored to avoid Zozzle’s detection. These malicious �les have

been polluted by an injection of benign features, as it decreases their maliciousness by

statistically reducing the impact of their malicious features. To foil JaSt, an attacker

could rather inject benign functions into a malicious �le, which would not change its

functionality but would statistically reduce our system’s maliciousness rating. Even

though it is highly e�ective (from our 200 malicious samples modi�ed by a transplan-

tation of 100 random benign functions, none of them were detected), we did not have

any such false-negatives in our dataset. This would furthermore be easy to detect and

avoid, e.g., with dead code elimination or even statically with Esprima, comparing

FunctionDeclaration’s Identi�ers with CallExpression’s Identi�ers since these functions

are never called. Another attack on JaSt might consist of inserting a malicious sample

into a –preferably signi�cantly bigger– benign one. Even if it accounted for around

a fourth of our false-negatives, it barely represents 0.1% of our malicious dataset, the

adversaries rather relying on obfuscation to hide their malicious purpose. A defense

against further adversarial attacks could be to combine the predictions of several clas-

si�ers (if the throughput is not a constraint). Another possibility consists in adding

some parameters to our evaluation system, like the number of (di�erent) nodes in the

AST or the amount of di�erent n-grams used, since it has a direct impact on the fre-

quency analysis whom an attacker might try to foil.

4.2 Extension of an Email-Based Model to Detect Web Samples

Section 3.2 presents the detection performance of JaSt after having been trained and

tested with malicious emails (and Microsoft samples for the benign part). As this model

has yielded good predictions on web frameworks, the source code of Atom and also

on the peculiar coding style of JavaScript games, even though these families were not

represented in the model, it is worth looking at an extension of an email-based model

to detect other types of JavaScript. In this experiment, we used the �ve email-based

models, constructed previously, to classify inline JavaScript extracted from malicious

HTML email-attachments, exploit kits from 2010 to 2017, and Alexa top 10k web pages.

For Alexa, we also extracted third-party scripts and considered that all scripts were be-

nign. While this is arguable in theory, JavaScript extracted from the �rst layer of the

ten thousand web sites with the highest ranking provided us in practice enough con-

�dence for this experiment. Although it has been showed that these web sites could



host malicious advertisements, our JavaScript extraction process, which relies on stati-

cally parsing the web page with Python and extracting script and src tags, protected us

from these elements generated dynamically. Figure 6 presents the detection accuracy

(in terms of either true-positive or true-negative rates) on the previous samples. An

HTML page or an exploit kit were considered benign if all the JavaScript snippets they

contained were classi�ed as benign. If one malicious JavaScript sample was detected,

the whole page was labeled as malicious.

JaStwas able to detect 82.31% of the 13,595 malicious web JavaScript, which shows

a certain similarity at the 4-grams level between email-JavaScript and web-JavaScript.

Further insights into the false-negatives indicated that 14.37% of the previous samples

had been correctly classi�ed as benign. As a matter of fact, a manual inspection of 80

exploit kits showed that in 21,25% of the cases, the malicious part was not embedded in

JavaScript samples. Instead, the attack vector was either contained in an SWF bundle

or the exploit kit merely included a resource trying to exploit an existing �aw without

any scripting code at all. Another issue is related to the quality of JavaScript samples:

while analyzing 110 malicious email attachments and exploit kits, we discovered that

some �les were broken and could therefore not be parsed. In 3.64% of the cases, the

malicious part could not be parsed, therefore not analyzed. We note that this means

that in an attack, this code would not have been executed. As a consequence, when

considering only HTML documents and exploit kits which could be entirely parsed

and whose malicious behavior was included into a JavaScript snippet, we got a true-

positive rate after treatment of 85,18%, which represents an improvement of 3.36%.

While malicious email and web samples present some similarities, they also have syn-

tactic di�erences, which prevented JaSt to provide as much con�dence in the detec-

tion of malicious web-JavaScript as for email-inputs. As a matter of fact, the former

tends to contain less malicious patterns and rather have comments at regular intervals,

benign snippets next to the malicious part, and a di�erent form of obfuscation than

malicious email-JavaScript. While the latter aims at providing a unique copy for each

recipient and therefore abuses variable and function name randomization, data obfus-
cation and encoding obfuscation [35], malicious web-JavaScript rather tend to identify

software vulnerabilities in client machines and exploit them to upload and execute ma-

licious code on the client side. For this purpose, the attackers preferably use variable
and function name randomization and neatly package their code, which can slightly

degrade JaSt e�ciency.

As for the detection of benign JavaScript extracted from Alexa top 10k, JaSt de-

tected 46.11% of them. Instead of grouping all JavaScript snippets of a web page to-

gether and labeling the web site as benign if all samples were recognized as benign,

we performed a second experiment. We collected every JavaScript snippet of Alexa top

10k (between 100 bytes and 1 megabyte, so as to have JavaScript code with enough

features to be representative of the benign or of the malicious class, without down-

grading the performance with too big a size) and considered them one after the other.

In total, we extracted 119,125 JavaScript samples and got a true-negative rate of 92.79%

(averaged over 5 runs) –which is much more acceptable than previously, based on an

exclusive non-web-model– therefore a false-positive rate of 7.21%. If we consider that

an Alexa top 10k web page contains n JavaScript snippets, we could expect a false-



positive rate of 100 − 7.21n
%. In average it contains 16 snippets, therefore the proba-

bility of getting a false-positive is 69.82%, even higher than the 46.11% we found, since

an average value does not give any information regarding the data distribution. How-

ever, we envision that JaSt would not operate on an un�ltered set of all Web pages,

but rather use greyware which already showed some indication of maliciousness (e.g.,

by instantiating an ActiveX object). This approach was also used by Kizzle [30].

Fig. 6: Detection accuracy of web JavaScript based on an email-model

We chose not to include any web-JavaScript extracted from HTML documents for

the training and evaluation part of this paper, but rather discuss the extension of an

email-based model to detect web samples for three reasons. First, we did not have any

ground truth regarding the position of the malicious entity in the malicious HTML �le,

which would have required a systematic analysis of our 13,595 snippets to detect and

use only the malicious JavaScript samples to train our classi�er with. For this reason,

we decided to exclude them from the evaluation part and instead chose to �ag any

HTML documents containing at least one malicious JavaScript snippet as malicious.

For symmetry purpose, we applied the same treatment to benign HTML �les, which

thereby reduced the number of benign scripts in our dataset. Last but not least, splitting

email and web evaluation was a way to show that the syntax-based features can be core

in classifying JavaScript: no matter the obfuscation used for hiding their functionality,

malicious JavaScript do not necessarily hide their true function.

5 Related Work

In the literature, several systems used essential di�erences in lexical, syntactic, or other

structural properties of JavaScript �les to analyze them.



Lexical analysis Several approaches bene�tted from lexical units and an SVM clas-

si�er to distinguish benign from malicious instances. In particular, Rieck et al. devel-

oped Cujo [29], a system combining static and dynamic analyses for the automatic

detection and prevention of drive-by download attacks. Embedded in a web proxy,

it transparently inspects web pages, extracting generic features based on an n-gram

analysis of JavaScript lexical units, and implementing a learning-based detection. With

PJScan, Laskov et al. [21] also combined the extraction of lexical units with an n-gram

analysis to detect malicious PDF documents. Contrary to Cujo, the learning phase was

performed only on malicious samples, the idea being to build a model of normality and

label the �les not respecting this model as benign. Beyond pure JavaScript detection,

Kar et al. [18] showed with SQLiGoT that a lexical analysis could also be performed to

detect SQL injections. This system normalizes SQL queries into sequences of tokens

and generates a weighed graph representing the interactions between the previous

tokens, before training a classi�er to identify malicious nodes.

Syntactic units derived from the AST Some other systems rather made use of

some essential features extracted from the AST to analyze JavaScript instances. For

example, Curtsinger et al. implemented Zozzle [7], a mostly static JavaScript mal-

ware detector deployed in the browser. It combines the extraction of features from

the AST, as well as the corresponding JavaScript text, with a Bayesian classi�cation

system to identify syntax elements highly predictive of malware. To address the issue

of obfuscation, Zozzle is integrated with the browser’s JavaScript engine to collect

and process the code created at runtime. A naive Bayes classi�cation algorithm was

also used by Hao et al. [9] to analyze JavaScript code by bene�tting from extended

API symbol features by means of the AST. Beyond a pure malware analysis, Kaprav-

elos et al. [17] rather chose to detect JavaScript samples, which were an evolution of

known malicious �les, or modi�ed malicious instances, now tailored to be recognized

as benign (evasion process). For this purpose, they developed Revolver to automati-

cally detect evasive behavior in malicious JavaScript �les, by using the AST as well as

a dynamic analysis to identify similarities between JavaScript samples. Besides detect-

ing malicious instances directly, the JavaScript AST can e�ectively be used to identify

a programmer (for plagiarism purpose, or to indirectly detect potentially malicious

�les, based on the writing skills of a known malware author). For this application,

Wisse et al. [33] extracted structural features from the AST, used n-grams to describe

the coding style of an author and their frequency analysis to recognize the program-

mer. As for dissimulation techniques, Kaplan et al. [16] quanti�ed with NoFus the fact

that obfuscation does not imply maliciousness: this static and automatic classi�er can

indeed distinguish obfuscated and non-obfuscated JavaScript �les, using a Bayesian

classi�er over the AST. More generally, Yamaguchi et al. [37] used ASTs to identify

zero-day vulnerabilities. Indeed, they guided the search for new exploits by extrapo-

lating known vulnerabilities using structural patterns extracted from the ASTs, which

enabled them to �nd similar �aws in other projects.

Other detection or clustering tools Lexical and syntactic analyses aside, additional

tools, bene�tting from other features, can be found in the wild. Essential di�erences in



structural properties between benign and malicious �les can also be a way for detect-

ing malicious PDF documents, for example, as explained by Šrndic et al. [31]. Kizzle

from Stock et al. [30] also aimed at clustering malware samples with a special fo-

cus on exploit kits. This malware signature compiler bene�ts from the fact that the

attackers reuse code while delivering it in various kits. Then Kolbitsch et al. imple-

mented Rozzle [19], a JavaScript virtual machine exploring multiple execution paths

in parallel to detect environment speci�c malware. In practice, it imitates multiple

browser and environment con�gurations while dynamically crawling to detect mal-

ware. EvilSeed [12] is an approach designed by Invernizzi et al. to e�ciently search

the web for pages that are likely to be malicious. Its starts from an initial seed of

known malicious web pages to identify other malicious ones by similarity or relation

to the seed. Finally, Canali et al. [5] had also been working on a faster collection of

malicious web pages with Prophiler. This �lter quickly discards benign pages based

on HTML-derived lexical features, the JavaScript AST, and an URL analysis.

6 Conclusion

Many malicious JavaScript samples today are obfuscated to hinder the analysis and

creation of signatures. To countermand this, in this paper we proposed JaSt, a fully

static AST-based analysis to automatically detect malicious JavaScript instances. The

key elements of this approach are: (a) an extraction of the syntactic units contained in

the �les to be classi�ed; (b) a frequency analysis of the n-grams built upon the previous

features; (c) the construction of a random forest using the previous frequencies as input

to either build a model or classify unknown samples and (d) the evaluation of JaSt on

an extensive, up-to-date and balanced JavaScript dataset. In practice, our approach

yields extremely accurate predictions (almost 99.50% of correct classi�cation results)

and has an outstanding false-negative rate of 0.54%, especially since the system is

entirely static. Despite this high detection performance, JaSt is also quite fast with

a mean throughput of 0.14 megabyte per second, while considering more than 2,400

di�erent features, either predictive of malicious or of benign samples. Besides, this

selection of abstract patterns enables our system to be resistant to common obfuscation

transformations without having to execute some code. As a consequence, it cannot be

foiled by malware variants whose behavior are time- or environment dependent.

To be long-time e�ective, JaSt has to adapt to new JavaScript instances. This adap-

tation process is achieved by extending the set of n-grams feature used with new, up-

to-date JavaScript samples. As a matter of fact, an analysis of JavaScript instances over

a few months showed that building a model each month to detect malicious variants in

the current month is only e�ective if the training set contains enough �les representa-

tive of the distribution found in the wild, and is not simply a compilation of di�erent

JavaScript waves received in the past few months. Last but not least we showed in

this paper that the same benign and malicious patterns are partially found in di�er-

ent JavaScript families. As a consequence, a model constructed with malicious emails

and benign frameworks can even be used to classify exploit kits, JavaScript games, or

other web-JavaScript inputs, highlighting the similarity between di�erent classes of

malicious JavaScript.
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