
Careful Who You Trust:
Studying the Pitfalls of Cross-Origin Communication
Gordon Meiser

CISPA Helmholtz Center for
Information Security

gordon.meiser@cispa.saarland

Pierre Laperdrix
CNRS / Univ. Lille / Inria
pierre.laperdrix@inria.fr

Ben Stock
CISPA Helmholtz Center for

Information Security
stock@cispa.de

ABSTRACT
In the past, Web applications were mostly static and most of the
content was provided by the site itself. Nowadays, they have turned
into rich client-side experiences customized for the user where
third parties supply a considerable amount of content, e.g., analyt-
ics, advertisements, or integration with social media platforms and
external services. By default, any exchange of data between docu-
ments is governed by the Same-Origin Policy, which only permits
to exchange data with other documents sharing the same protocol,
host, and port. Given the move to a more interconnected Web, stan-
dard bodies and browser vendors have added new mechanisms to
enable cross-origin communication, primarily domain relaxation,
postMessages, and CORS. While prior work has already shown
the pitfalls of not using these mechanisms securely (e.g., omitting
origin checks for incoming postMessages), we instead focus on
the increased attack surface created by the trust that is necessarily
put into the communication partners. We report on a study of the
Tranco Top 5,000 to measure the prevalence of cross-origin com-
munication. By analyzing the interactions between sites, we build
an interconnected graph of the trust relations necessary to run the
Web. Subsequently, based on this graph, we estimate the damage
caused through exploitation of existing XSS flaws on trusted sites.

ACM Reference Format:
Gordon Meiser, Pierre Laperdrix, and Ben Stock. 2021. Careful Who You
Trust: Studying the Pitfalls of Cross-Origin Communication. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3433210.3437510

1 INTRODUCTION
In their early days, Web applications consisted mostly of static
content, allowing neither for the interaction with the user without
loading a new page nor enabling inclusion of third-party content.
Terms like "iframe," "login area," and "asynchronous JavaScript"
were foreign words for site operators and developers. Nowadays,
Web applications have turned into rich client-side applications,
and third parties supply a growing amount of content to a given
site from ads and tracking services to the integration with social

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3437510

media platforms. This accumulation of content sources inevitably
leads to a steadily increasing demand for interaction between the
related parties. By default, any communication between origins is
prohibited by the Same-Origin Policy (SOP), which ensures that
only documents with the same protocol, host, and port can access
each other. The SOP proved to be too restrictive for the modern
Web, and the W3C standardized two new ways of cross-origin com-
munication, namely postMessages and CORS. Together with the
long-existing concept of domain relaxation, which enables sub-
domains of a common parent to interact with each other, these
methods allow sites to loosen their security parameter. However,
by trusting others to provide data or even enabling code execution,
whenever the trusted site is attacked through an XSS, the trusting
site also falls victim to the attacker.

While the subject of trust in third parties has been well-studied
with respect to inclusion behavior [15, 23, 25], we instead focus on
a subtly different problem space. Specifically, we look at the trust re-
lationships between Web sites that the aforementioned cross-origin
communication mechanisms entail. The main difference to prior
work is that an attacker does not need to compromise a third-party
server to manipulate the JavaScript it hosts, but it is rather sufficient
to find an XSS vulnerability on a trusted communication partner. Ac-
cording to the 2019 Acunetix Web Application Vulnerability Report,
up to 30% of Web application are susceptible to XSS [3]. In addition,
academic works on client-side XSS have reported exploitable flaws
on up to 10% of the tested sites [19, 20, 28]. In contrast, vulnerabil-
ities that may cause an attacker to take over an entire server, are
much less frequent. According to the Acunetix report, only 2% of
the Web applications they analyzed were susceptible to RCEs and
5% had some type of overflow vulnerability. Hence, our main focus
is to ask: what is the ripple effect caused by a trusted site (in terms
of cross-origin communication) that is susceptible to an XSS.

Prior works have already studied the insecurity of CORS configu-
rations [4, 8, 17] and postMessages [13, 14, 26, 38]. Notably, though,
we are not interested in utterly insecure configurations, but rather
want to investigate the threats caused by necessary trust sites put
into each other. To that end, we analyze domain relaxation, CORS,
and postMessages to build a graph of the connections between sites
and the trust they share with each other. Specifically, by crawling
the Tranco top 5,000 Web sites, we aim to answer the following
three research questions related to trust on the Web:

• (RQ1): How closely intertwined are modern Web sites and how
prevalent are the connections between them? Additionally, we
examine the kind of relationships and the type of the inter-
changed data. The data from our crawl allow us to investigate
which problems could potentially arise, and what could be
the impact of insecure usage of cross-domain connections.

https://doi.org/10.1145/3433210.3437510
https://doi.org/10.1145/3433210.3437510

• (RQ2): Can cross-domain communication lead to an increased
attack surface of an otherwise secure site? In other words, can
a Web site be attacked through a trusted, vulnerable one?

• (RQ3): In the face of a classical Web attacker, how vulnerable
can a site be? Based on the prior results, we consider an
attacker who exploits reflected client-side XSS flaws, and
analyze the impact they can have while leveraging the es-
tablished trust relations.

Contributions By answering those research questions, our paper
makes the following contributions:

• We implement a crawling framework which enables us to
collect trust relations as well as the JavaScript code involved
in cross-origin communication (Section 4).

• We report on a large-scale empirical study of the Tranco Top
5,000 domains w.r.t. the usage of Cross-Domain communica-
tion mechanisms (Section 5.1).

• Leveraging the collected data, we build a graph of the estab-
lished trust relations (Section 5.2) and analyze the security
impact of the different cross-origin communication methods
(Section 5.3).

• Based on case studies, we illustrate common scenarios where
established trust relations can bemisused in unforeseenways
(Section 5.4).

• Finally, we demonstrate the real-world exploitability by syn-
chronizing our previous findings with our defined attacker
model of an XSS attacker (Section 5.5).

2 THREAT MODEL AND PROBLEM SCOPE
Rather than focussing on the inclusion of third-party code, which
is a well-studied problem, we instead aim to understand what risks
come with the reliance on cross-origin communication methods on
the Web. While at first, the issues appear related, they are in fact
quite distinct. An attacker can leverage the trust in included Java-
Script through two attacks: either, they can attempt to manipulate
the content in transport (MitM attack) or compromise the third-
party server, modifying the hosted code. The first attack nowadays
is mostly thwarted through the widespread usage of HTTPS1 and
the design choices of browsers, which refuse to include scripting
content over insecure connections for sites that are delivered via
HTTPS. For the second attack vector to be successful, an attacker
needs to somehow compromise the server. This can be achieved
by directly attacking the server (e.g., bruteforcing SSH/FTP pass-
words), attempting social engineering attacks to gain access, or
by exploiting vulnerabilities. While compromising a high-profile
server has severe consequences to all sites that include content
from it, the likelihood is also comparatively small. As discussed by
[3], only 2-5% of Web applications suffer from a flaw that allows
for code execution.

In contrast, XSS vulnerabilities occur much more frequently.
According to [3], 30% of Web applications carry such a flaw, and
researchers have shown that around 10% of Web sites are suscepti-
ble to reflected client-side XSS flaws [19, 20]. Hence, if an attacker
can identify a Web application that is trusted by others to send
postMessages (which end up being evaled) or is allowed to read

1https://pokeinthe.io/2019/04/04/state-of-security-alexa-top-one-million-2019-04/

authenticated responses through CORS from others, such an ap-
plication becomes the target to detect XSS flaws on. Given the
much higher success rate in XSS exploitation over a full server-side
compromise, such an application becomes the prime target for an
attacker. In our paper, we therefore focus on this particular danger,
which occurs when sites necessarily trust each other.

3 CROSS-ORIGIN DATA EXCHANGE
The Web’s most basic security policy is the Same-Origin Pol-
icy (SOP), which applies a straightforward principle: its restricts
access to resources as soon as the origin [37] (protocol, host, and
port) differs from the requesting page’s own values. The SOP is
a fundamental security mechanism that provides boundaries be-
tween Web sites and prevents unauthorized access to sensitive
information. Doing so, the SOP creates a security barrier around
an application which is bounded by the origin. As the Web evolved
and became more complex, the SOP proved to be too restrictive.
While browsers already implemented a relaxation of the SOP based
on a common parent domain (dubbed Domain Relaxation), the W3C
also standardized new mechanisms to address this demand, namely
postMessages and Cross-Origin Resource Sharing (CORS). In the
following, we outline how these three mechanisms work and how
we consider them to be relevant when we investigate trust between
origins and sites.

3.1 Domain Relaxation
If two HTML documents on different subdomains, but common
parent domain, want to exchange data, they can relax the domain
part of their origins. In particular, a document can relax its origin
to the registrable domain (eTLD+1). By doing so, it allows other
documents which also relaxed their origin to the same value to
share an origin, meaning the two documents can now access each
other fully (i.e., can execute JavaScript in each other’s context and
read the DOM). For example, if https://login.example.com and
https://example.com want to communicate, they can both set
their document.domain to example.com so that they are allowed
by the browser to exchange information. This mechanism requires
both origins to opt in and does not enable cross-protocol (HTTP vs.
HTTPS) data exchange. In our example, if only the subdomain were
to opt in, it would not be able to access resources on the parent
domain. Notably, though, if https://login.example.com sets it
document.domain property to example.com, it enables any other
HTTPS subdomains of example.com to gain access; as all the other
origin has to do is also relax its own origin. Hence, as long as a
single origin relaxes its domain part, it allows read and execute
access from any subdomain of the relaxed domain.

3.2 postMessages
As soon as the communication exceeds the borders of a registrable
domain, domain relaxation cannot be used any longer. To never-
theless enable two documents to communicate, the HTML5 spec-
ification standardized the postMessage API [36], which allows to
send serialized messages between two documents. This mechanism
therefore allows to exchange data across origin and site boundaries.
The only necessity for this to work is that both documents are

https://pokeinthe.io/2019/04/04/state-of-security-alexa-top-one-million-2019-04/

// sends message (from https://example.com)
var popupFoo = window.open("https://foo.com", ...);
popupFoo.postMessage("Hi there!", "https://foo.com");

// receives message (on https://foo.com)
window.addEventListener("message", receiveMessage, false);
var allowedOrigins = ["https://bar.com", "https://example.com"]
function receiveMessage(event)
{
if (!allowedOrigins.includes(event.origin))
return;

// ...
}

Figure 1: postMessage() example

loaded in the same browser and have JavaScript references to each
other (e.g., through an opened popup window).

Figure 1 shows an exchange of messages between two docu-
ments running at https://example.com and https://foo.com,
respectively. Using the reference popupFoo to the opened popup
window, example.com sends a message to foo.com that will be
processed in its message handler. One important security aspect
of postMessages is that it can provide strong guarantees on any
sent message. The sender can specify which origin is permitted to
receive the message, and the receiver can verify the origin of the
message to ascertain its integrity. In our example, example.com
specifies https://foo.com as the sole recipient of its message.
This ensures that if for some reason the opened popup is navigated
away, the possibly sensitive message is not accidentally delivered
to another origin. Then, foo.com verifies that the received message
comes from one of the allowed Web sites present in allowedOrigins
(here either https://bar.com or https://example.com). While
prior work [26] has shown many message handlers either have
no check at all or implement them insecurely, e.g., through sub-
string matching or incorrect regular expressions, in our work we
are specifically interested in the dangers of trusting parties. That is
to say, we assume a postMessage handler to be securely checking
the origin of a message, and in light of that evaluate the dangers of
trust put into the allowed senders.

3.3 Cross-Origin Resource Sharing
The third mechanisms we are considering is Cross-Origin Resource
Sharing (CORS). Contrary to the previous two mechanisms, CORS
is a set of server-side headers, enforced by the client, which al-
low a server to allow read access from JavaScript. That is to say,
a document makes a request to a remote URL, and CORS governs
access to the response. This is in contrast to the other mechanisms,
which only involves client-side documents communicating with
each other. In a nutshell, CORS is an extension of the XMLHttpRe-
quest API to allow cross-origin content in the browser through
explicit authorization [33]. If a browser visiting site A makes a
request for data to site B, the SOP will not grant read access to the
received content. It becomes readable only if site B is CORS con-
figured and responds with an Access-Control-Allow-Origin (ACAO)
header indicating that A is allowed as a communication partner.

The list of trusted parties must be implemented internally and
programmatically as the standard only support allowing a single
origin within a CORS response. If a site wants to allow access from

1 GET / r e s o u r c e s / p r i v a t e−d a t a / HTTP / 1 . 1
2 . . .
3 O r i g i n : h t t p : / / a . com
4
5
6 HTTP / 1 . 1 200 OK
7 . . .
8 Access−Contro l−Al low−Orig in : h t t p : / / a . com
9 Content−Type: a p p l i c a t i o n / xml
10
11 [XML Data]

Listing 1: CORS example (simple request)

any origin, it can set this header to the * wildcard. In addition, by
default CORS does not allow for credentialed requests, i.e., those
that have cookies or specific authentication headers attached. To
allow for this, the contacted server must opt in by setting theAccess-
Control-Allow-Credentials (ACAC) header to true. Importantly from
a security point of view, credentialed requests with a * wildcard
are forbidden; even if ACAC is set to true, browsers will ignore
the header, failing securely. The only way for an insecure configu-
ration is for a site to blindly reflect back the requesting origin in
the ACAO header and set the ACAC header to true. While others
have demonstrated that this occurs in practice [4, 8], we are again
only interested in explicitly specified trust, not misconfigurations,
leading to insecurity.

4 COLLECTING TRUST RELATIONS
The SOP protects sites from data abuse over cross-origin borders.
However, a large percentage of the Web relies on communication
extending beyond the borders of the current origin. To provide the
wealth of features expected by users, Web sites rely more and more
on other sites to provide advanced functionality and exchange of
data therefore becomes indispensable. As shown by Stock et al.
[31], the number of sites using CORS and postMessages increased
substantially in the past decade. They observed that over 65% of the
Alexa top 500 in 2016 either received postMessages or sent them.

With this increasing reliance on other sites, our aim in this study
is to measure the current level of interconnection between Web
sites and map the trust relations between them, allowing to answer
our first two research questions, namely:

(1) How closely intertwined are modern Web sites and how
prevalent are the connections between them?

(2) Can cross-domain communication lead to an increased attack
surface of an otherwise secure site?

We note here that a different domain does not imply another
party, e.g., Youtube and Google are the same party, yet have different
domains. We are, however, interested in understanding to what
extent a compromise of one site could adversely affected others
which trust it (through any of the outlined mechanisms).

4.1 Collecting One-to-One Relations
To investigate how Web sites are connected with each other, we
crawl the top Tranco 5,000 Web sites [24] and record occurrences
of cross-origin communication. The crawler is a NodeJS script uti-
lizing Puppeteer [12] to control and automate a Chrome browser.

eTLD+1

sub1

sub2

dd set

dd not set

dd not set

case: no found dd
for eTLD+1

sub3
dd set

eTLD+1

sub1

sub2

dd set

dd not set

dd set

case: found dd
for eTLD+1

sub3
dd set

Figure 2: Trust relationship generation for document.domain

Puppeteer is a library which uses the DevTools Protocol [11] to con-
trol the browser. We do not rely on any security exemptions, such
as disabling CSP or site isolation, in our crawls. Using the crawler,
we search for anchor elements on the visited pages to find subpages,
log occurrences of domain relaxation, analyze postMessages, and
log CORS-related headers. While we only follow links discovered
on the main frame, we record all communication for loaded iframes
as well. With the collected data, we build trust chains that help
us identify and understand security risks originating from these
exchanges. In the following we what data we collect and how we
combine it to build these chains and subsequently our graph.

4.1.1 Domain Relaxation. On each page that we visit, we leverage
Puppeteer functionality to inject JavaScript code to modify the set-
ter of document.domain and record when it is modified. At the same
time, we collect the current location.href so that we can precisely
identify which origin is relaxing to which domain. When multiple
origins in form of subdomains relax their SOP, they gain execute
privileges equivalent to the rules denoted in Figure 2. Here, the
arrows indicate the direction of trust, i.e., in the example to the
left, sub1 trusts sub2 with execute privileges. However, since sub2
does not set its document.domain property (abbreviated as dd in
the figure), sub1 does not automatically gain an execute privilege;
hence there is no bidirectional trust depicted. In the example on
the right, the main page running on the eTLD+1 also sets its doc-
ument.domain property. Hence, it only bidirectionally trusts sub1
and sub3, and unidirectionally trusts sub2.

4.1.2 postMessages. To record the use of postMessages, we use
Puppeteer to inject JavaScript code to hook the EventListener
of message events. Given the lack of automated tools to analyze
postMessage handlers, we rely on manual analysis of the involved
JavaScript code. To nevertheless allow for our study’s scope, we
aim for a certain level of automation. To achieve this, we are inter-
ested in extracting (for each pair of incoming message and handler)
the snippets of code which handle the specific message. As not all
functionality is necessarily implemented in the registered event
handler, but rather often the handler itself is just a stub which calls
the actual functionality, we need to record all code that interacts
with the incoming message. To achieve this, we rely on a JavaScript
Proxy object. In particular, instead of passing on the message to
the handler, we pass a Proxy around the message. If in the Proxy
object, properties like origin, data, or source are accessed, we
not only return the values, but importantly also dynamically col-
lect the source code of the calling function. In addition, instead of

if(evt.data.msgType == 'successParent'){
var c = evt.data.msgValue.replace('[[formData]]',

evt.data.formData);↪→

var d = c.replace('[[formData]]','');
eval(d);

}

Figure 3: Dangerous postMessage handler example

returning the raw values, we wrap these in yet another JavaScript
proxy; this enables us to collect all source code that interacts with
the value extracted from the postMessage object (e.g., when the
data property is assigned to a variable and the variable is passed
on). This way, whenever any JavaScript code uses data originating
from an incoming message, we can record said code.

This choice of dynamic instrumentation has a functional draw-
back: if, e.g., an origin check uses the triple-equals comparison,
JavaScript first checks the two values for their type. As the origin
is now of type Proxy, whereas the value it is compared to is of type
String, the comparison always fails. To partially counter this issue,
we use mitmproxy [6] to proxy all HTTP connections from the
browser. We then check the resource type for being HTML (for in-
line JavaScript) or JavaScript and for the occurrence of triple-equal
signs; if found, we replace them with double-equals. As accessing
the value of our Proxy object returns the original string and the
double-equals comparison omits the type check, the JavaScript code
executes as expected. We argue that this does not cause false posi-
tives for two reasons: first, coming back to the example of the origin
check, the proxy and string values still need to be the same. Second,
we manually validated all occurrences of problematic handlers in
a regular browser without the Proxy functionality, meaning that
if during our crawl we incorrectly visited a certain branch of code
(due to the changed comparison semantics), that code would not
be reached in the test. While this workaround addresses the issues
related to triple-equals comparison, JavaScript code can also use
explicit typeof checks. We opted against replacing those checks,
as this might break intended functionality (e.g., if JavaScript code
expects a String, but instead receives an Array, simply checking
against Object would allow the Array to pass through).

With this mechanism in place, we resort to manual analysis of
the collected postMessage handler/message pairs. In particular, we
focus on two scenario which are relevant to our work, namely
execute and persistent modification:

Execute privileges: We check if data originating from postMes-
sages ends up being used in either eval(), innerHTML(), or docu-
ment.write() (and the derivatives and wrappers such as jQuery’s
.html). To find these cases, we query the database of collected Java-
Script code for occurrences of the API calls, and resort to manual
analysis of the code. Based on this code review, we then determine
if an incoming postMessage can trigger code execution (either di-
rectly through invocation of eval or by adding script content) and
build a proof-of-concept. Figure 3 shows a problematic handler,
where the site expects a JSON object with a certain structure (ms-
gType must be successParent), and evals the msgValue attribute. If
the execution is successful, we say that the incoming postMessage
provides execute privileges to the sender.

Persistent modification: With the same technique, we can also
detect if data from postMessages can cause changes to arbitrary
items of persistence APIs in the browser, in particular we look for
calls to Local Storage and document.cookie and examine the
logged source code. As Steffens et al. [28] have recently shown,
numerous sites insecurely use data from these persistent storages
in their application, leading to what the authors dubbed Persistent
Client-Side Cross-Site Scripting. While these cases are a straightfor-
ward security issue, there may exist more subtle problems as well,
e.g., modification of a session cookie to conduct a session fixation at-
tack [16] or modification of client-side state in Progressive Web Ap-
plications [18]. Hence, we label all cases where a postMessage may
cause changes to arbitrary storage values as chanдe persistence .

Once we have found that an origin grants either privilege in the
way described above, we label this as either explicit or implicit trust.
We denote explicit trust when a document conducts an origin check
before handling the message. As we manually examine the source
code, we can determine if the trust is for a single domain/origin
(e.g., when the origin check compares against a single value) or
multiple origins (e.g., through regular expressions). However, there
may be cases where there is no origin check at all. As we assume
that during our crawls we are not targets of an attack, we rely on
collected data to infer implicit trust. That is, when origin A handles
a postMessage from origin B, we assume A implicitly trusts B as
this would be required for proper functionality. The outcome of
our analysis therefore is a connection between two origins which
either has an execute or change persistence privileges, and where
the trust is either explicit or implicit.

4.1.3 CORS. A Web developer can use CORS to restrict commu-
nication to a set of trusted partners. By looking at each external
resource loaded by the browser, we search forAccess-Control-Allow-
Origin (ACAO) and Access-Control-Allow-Credentials (ACAC) head-
ers in the responses. If an explicit origin A allowed by B in addition
to the credentials header, we assume that the site B trusts A. We
denote this trust relation as a read trust (A is allowed to read data
from B). To create that list, we perform the following two actions:

CORS data collection: During our crawls, we can already observe
CORS headers of allowed origins. To ensure that these observed
headers are not caused by a misconfiguration which blindly re-
flects the requested origin, we additionally test the CORS-enabled
endpoint with a bogus origin (such as attacker.com), determine
whether they reflect the origin and set the ACAC header, and if so,
flag those endpoints as vulnerable. While we exclude them for later
analysis, we keep them in the dataset to reason about the usage of
CORS on the Web in general.

CORS allowlist augmentation: CORS does not immediately de-
liver the allowlist, but can contain at most one allowed host. Hence,
to test for additional hosts, we resort to other cross-domain mecha-
nisms to generate seed origin to check. In particular, when present
in a page, we extract the connect-src from its Content Security
Policy (CSP), which is primarily used to control to which URLs a
page can establish an XMLHttpRequest [9]. Hence, if we find that
site A allows site B, we test site B’s CORS configuration by supply-
ing site A’s origin. Next to this, we also rely on policy files for Flash
(crossdomain.xml) and Silverlight (clientaccesspolicy.xml).
While we do not consider these technologies relevant to our work,

https://samsungasiasupport4
.zendesk.com https://www.samung.com https:/account.samung.com

postMessage

[execute]

document.domain

[execute]

Figure 4: Example path discovered on samsung.com

the allowed hosts nevertheless provide additional seeds for CORS
testing. Here, for all allowed origins in A’s policy files, we test A’s
CORS configuration using those entries.

4.2 Linking the Collected Data
The results of all our tests thus far are 1-to-1 connections between
different origins on the Web. To form a full picture of the Web’s
trust relations, we use the point-to-point connections to construct a
graph. For domain relaxation, all edges between origins are labelled
as execute (as discussed in the previous section). For CORS, all rela-
tions have the read privilege attached to them. For postMessages,
we can either label an edge as execute if the received message is,
e.g., passed to eval, or as change persistence if the handler allows
for arbitrary modification of cookies or Local Storage. Once the
individual connections are composed together as a graph, we run
our analyses on them.

Figure 4 shows a small subgraph of the collected data. Note
the arrows indicates privileges rather than trust, i.e., the arrows’
direction shows what an attacker can achieve. Here, we see that
https://samsungasiasupport4.zendesk.com can execute JavaScript
on https://www.samsung.com due to an intended functionality
which passes the postMessage’s content to an execution sink. An
adversary that is able to compromise the zendesk origin can eas-
ily pivot to the main page; either by loading www.samsung.com in
an iframe or opening a popup (note that Samsung does not de-
ploy mechanisms for framing control such as X-Frame-Options
or CSP). This now enables the attacker to execute code in the ori-
gin of https://www.samsung.com. The attacker can now pivot
to the account page. Since the account page already relaxes its
origin, the attacker’s JavaScript code first relaxes its origin to sam-
sung.com. Subsequently, the malicious code on www.samsung.com
now loads the account page in an iframe. Although this has set
X-Frame-Options, it explicitly allows Samsung’s main page for
framing. Since both documents now share the (relaxed) origin, the
attacker’s code can now exfiltrate account data from the victim.
Note that even a defense mechanism that would disallow framing
(either X-Frame-Options or CSP) would not help, as the attacker
could simply open a popup instead. While this attack is more ob-
vious to a user, it can be run within mere seconds, not allowing
the victim to close the popups before their data is stolen. Impor-
tantly, there is no connection from Zendesk to Samsung’s account
domain; yet through the trust relations we observe, compromising
the Zendesk page will lead to a compromise of Samsung’s account
page.

5 RESULTS OF LARGE-SCALE ANALYSIS
In this section, we first provide an overview of the state of cross-
origin communication, split up by the different mechanisms we

https://samsungasiasupport4.zendesk.com
https://www.samsung.com

discussed. This data is based on the Top 5k sites (see Section 4.2) of
the Tranco Top list [24]. The crawler receives as initial input a list of
the first 5,000 Tranco domains, which respond with an HTTP status
code between 200 and 399. The crawler is configured to collect links
and visit the ones belonging to the same site (registrable domain,
eTLD+1) only once and up to depth 2. It enters all new URLs to a
relational database until it hits the limit of 1,000 links per site. Given
our limit of 1,000 same-site links, we visited a total of 3,078,360
URLs. As 141 sites have not been crawled successfully (e.g. due to
timeout errors), we restrict the following analysis to the remaining
4,859 sites. Since our analysis requires manual investigation of
postMessage handlers, we decided to only run the crawl once.While
this only allows us to capture a single snapshot, we believe the
general problematic patterns would occur in every crawl.

5.1 Usage of Cross-Origin Mechanisms
Table 1 shows the number of sites making use of any of the cross-
origin communication mechanism. In total, we find that 4,509 sites
(92.8% of the sites for which we could collect data) use at least one of
the mechanisms we investigate on at least one of their subdomains.
The word use has a different meaning for every element in the table.
Concerning domain relaxation this refers to the percentage of sites
that set document.domain on at least one of their subdomains. For
CORS, we distinguish between receiving data and sharing data.
Here, receiving data refers to the case when a site makes a cross-
origin request and receives a CORS header granting access in the
response. Sharing data instead refers to the case where a URL on a
given site sends a CORS response header authorizing the request
(i.e., either responds with a wildcard or whitelists the requesting
origin via Acccess-Control-Allow-Origin). Note that the two
numbers do not align as there are many more initiators of cross-
origin requests than there are sites these requests go to (especially
in the top 5,000 sites). For postMessages, the table shows the number
of sites that sent and received postMessages, respectively. Here,
we also see that more sites receive postMessages than send them.
We attribute this to the widespread usage of postMessages for
advertisements; here, the ad frame often transmits parameters to
the main page, but does not receive any answers.

Most of the sites use CORS (91.6%) or postMessages (84.6%)
to exchange data, a smaller part uses document.domain (12.5%)
to provide full execution privileges to other subdomains under
the same parent domain. Our findings indicate that the trend of
increasingly relying on cross-origin communication [31] continues.
More importantly, the vast majority of high-profile sites is making
use of data from other origins in one way or the other.

5.1.1 Exchanged Data. Table 2 shows the five highest-ranking sites
which use domain relaxation. We note that the mechanism is very
popular, as evidenced not only by the 12% usage in the top 5,000,
but importantly even in the highest-ranking sites. Notably, four
of the five domains only make use of the mechanism on at least
one subdomain, but not the main domain, i.e., its use is related to
subdomains being enabled to communicate between each other, but
not with the main page. Interestingly, we only observe the usage
of document.domain on both Twitter and Microsoft on merely a
single subdomain; begging the question of the necessity in the first
place (as there seems to be no sibling domain to communicate with).

Table 1: Usage number of cross-originmechanisms, showing
number of sites in the initial dataset and fraction relative to
the 4,859 successfully crawled sites

Mechanism # sites fraction

document.domain set 607 12.5%

CORS data received 4,435 91.3%
CORS data shared 2,225 45.8%
CORS union 4,454 91.6%

postMessages sent 3,604 74.2%
postMessages received 4,084 84.1%
postMessages union 4,111 84.6%

Union of all mechanisms 4,509 92.8%

Table 2: Five highest ranking domains using docu-
ment.domain on at least one subdomain

site rank on main page

facebook.com 2 yes
twitter.com 5 no
microsoft.com 6 no
tmall.com 7 no
baidu.com 10 no

We now take a closer look at postMessages, with Table 3a show-
ing the five sites with the most outgoing postMessages. Not surpris-
ingly, social media platforms like Facebook (rank 1) and YouTube
(rank 3) can be found here because they use postMessages in or-
der to resize iframes, interchange data about the login status of
the user, and send status/control messages for their video players.
Representatives of web/data analytics pages like Hotjar (rank 2)
and Consensu (rank 4) are also contained within the top 5. Finally,
Google uses postMessages for recaptchas, to relay oauth2 requests
to accounts.google.com, as well as for ads delivery.

Table 3b shows the top 5 sites with the most incoming postMes-
sages. Again, social media platforms (Facebook, Twitter) and we-
b/data analytics sites (Hotjar, AddThis) are the most prevalent,
accompanied by Google. This is not particularly surprising, as the
nature of the businesses requires a bidirectional exchange of data.
However, sites receiving data from this many other parties cannot
rely on meaningful origin checks, as they would have to whitelist a
sheer endless number of origins. Hence, the secure usage of pro-
vided data, especially in those “high-volume” sites is of utmost
importance. In particular, as many of these sites act as hubs that
both send and receive messages, compromising such a hub allows
an adversary to abuse existing trust relations to numerous others.

Table 3c lists the top 5 sites that share data via CORS, meaning
that they replied to requests with a CORS header, either whitelisting
the requesting origin or responding with a wildcard. We find that
of the top 5, all but Facebook make use of CORS with the wildcard
*. We attribute this to the fact that they all host scripts which are
included from others. In particular, if a script’s integrity is meant
to be ensured through Subresource Integrity (SRI) [10], the hosting
site needs to enable cross-origin read access. Complementary to the
sites which enable cross-origin read with CORS, Table 3d shows
sites that are CORS-whitelisted by most others. The top-rated are

Table 3: Sites making the most use of postMessage and CORS for cross-domain data exchange, showing both total number of
involved sites and only those within the initial top 5,000 sites

(a) Top senders of
postMessages

receiving sites
(in top 5,000)

facebook.com 1,599 (1,313)
hotjar.com 1,218 (824)
youtube.com 1,001 (901)
consensu.org 439 (373)
google.com 413 (375)

(b) Top receivers of
postMessages

sending sites
(in top 5,000)

facebook.com 2,800 (2,038)
twitter.com 2,719 (2,207)
google.com 2,642 (2,220)
hotjar.com 1,200 (817)
addthis.com 1,083 (833)

(c) Top sites sharing
data via CORS

sharing with
(in top 5,000)

facebook.com 2,745 (1,928)
fontawesome.com 981 (731)
cloudflare.com 910 (658)
jquery.com 783 (633)
criteo.com 534 (408)

(d) Top sites reading
data via CORS

received from
(in top 5,000)

lemonde.fr 52 (13)
pennlive.com 51 (17)
telegraph.co.uk 51 (17)
lefigaro.fr 50 (14)
cleveland.com 49 (17)

news-related, and we determined that their heavy reliance on CORS
stems primarily from ads and SRI-pinned scripts.

5.2 Collected Trust Relations
We now model the 1-to-1 relations collected in our experiment
into our graph database. In total, this amounts to 291,218 nodes
representing distinct origins. Notably, only 113,758 of them are
located within the top 5,000 sites we considered. This indicates that
a significant fraction of cross-domain communication occurs with
sites outside of the highest-ranking sites. Between the nodes, we
then first add 1,070,915 domain relaxation edges. Although usage
of document.domain is not as widespread as other mechanisms,
for n subdomains which set document.domain, they allow other
n− 1 subdomains access (and vice versa). Importantly, even if a sub-
domain sd sets document.domain, yet none of its sibling domains
does, sd still implicitly allows any sibling domain to gain access (yet
not vice versa). Additionally, we add 372,809 CORS relationships,
and 154,179 postMessage edges to the graph.

As a next step, we update the graph and create the execute,
change persistent and read connections, as described in Section
4.2. All domain relaxation relations become execute connections.
For postMessages, we manually examined 385 handlers which used
eval(), document.write(), and innerHTML() to determine if they
would allow a message sender to execute code. Out of these 385
candidates, we determined that 145 handlers enable execution of
arbitrary JavaScript code. Of those, 48 contained an origin check,
thereby making their trust explicit. For the remaining 97, no ori-
gin check occurred. Based on our notion of implicit trust, we label
sites using the handlers as trusting all parties from which they
received messages when we crawled the applications. Since several
handlers are used across different sites, we in total add 422 execute
connections to the graph, affecting 70 different sites.

Additionally, we examined the source code of 129 postMessage
handlers that use Local Storage and 283 handlers setting cookies.We
found that 49 of the Local Storage and 50 of the cookie postMessage
handlers allow storing arbitrary values in the Local Storage and
cookies, respectively. 10 of the Local Storage handlers used an origin
check and 20 of the cookie handlers used checks. For the remaining
cases, we resort to our notion of implicit trust. In total, we added
559 corresponding Local Storage relations and 927 cookie relations
to the graph, affecting 35 and 30 sites, respectively. Due to two sites
allowing both modification of cookies and Local Storage, in total
63 sites trust others with change persistence.

Due to the nature of CORS we cannot collect full whitelists
at runtime, as CORS is meant to be used to explicitly whitelist a
single origin. To that end, we augment the data as described in
Section 4.1.3 using CSP, Flash, and Silverlight policies as indicators
of whitelist candidates. Using CSP’s connect-src, this enabled us
to find an additional 923 whitelist entries (from 216 different sites)
which were whitelisted on 217 sites. Furthermore, the policy files
yielded additional 3,737 whitelist entries (across 241 sites), which
enabled 481 additional sites to read data cross-origin. Note that we
discard all those entries for sites which blindly reflected the Origin
contained in the request. To achieve this, we pick a random origin
and if that is reflected, we mark the site as irrelevant for us; this is
because we are not interested in insecure configuration (as Chen
et al. [4] did), but rather in intended trust relations. As a final check,
we ensure that the sites we test also set ACAC header to true, as
only credentialed requests are within scope of our analysis.

5.3 Impact Analysis
document.domain enables pages under a common parent domain
to access each other, hence the trust is not placed on other parties.
Nevertheless, whenever a domain sets the corresponding property,
it opens itself up to attacks from any subdomain of the set domain.
In our data, we found that out of the 607 sites that use domain
relaxation at least on a single subdomain, 231 use it on their main
page (domain.com or www.domain.com) and set the property to the
registrable domain. Hence, in those cases, the main page is suscep-
tible to being attacked by any subdomain that can be compromised
by an attacker. While the overall number relative to the dataset
we crawled is small, it contains a number of high-profile domains
(such as Alibaba, American Express, and Facebook).

We now focus on cross-site trust, i.e., both postMessages which
enable execute or change persistence as well as CORS read accesses
across sites. Table 4a shows the results for outgoing execute re-
lations, i.e., which sites are most trusted by others. We find that
kameleoon.com, an advertisement company, has the most trust put
into it by others. We analyze this case in more detail in Section 5.4.2.
We also find that Facebook and Twitter are highly ranked. This,
however, is an artifact of our notion of implicit trust, as we ob-
served handlers enabling code execution on sites that also received
messages from Twitter and Facebook.

Table 5a shows the sites that allow most other sites to gain the
execute privilege on them. We find that there are a number of sites
which trust at least 12 other sites to provide code or markup to

Table 4: Sites most trusted by others with execute, change persistence, and read privileges

site # origins # sites

kameleoon.com 44 19
facebook.com 28 17
twitter.com 21 13
googlesyndication.com 17 12
2mdn.net 11 9

(a) execute

site # origins # sites

facebook.com 50 11
twitter.com 11 10
addthis.com 5 5
rcsobjects.it 24 5
instagram.com 5 5

(b) change persistence

site # origins # sites

alicdn.com 30 11
ampproject.org 9 9
alipayobjects.com 10 7
google-analytics.com 12 6
bostonglobe.com 5 3

(c) read

Table 5: Sites trusting most others with execute, change persistence, and read privileges

site # origins # sites

filgoal.com 15 15
mynet.com 16 13
khabaronline.ir 13 12
hemmings.com 13 12
vnexpress.net 13 12

(a) execute

site # origins # sites

wp.pl 66 33
appledaily.com 56 28
kompasiana.com 19 18
buzzfeed.com 24 17
playbuzz.com 16 14

(b) change persistence

site # origins # sites

tmz.com 24 20
sears.com 22 16
kmart.com 24 14
daraz.pk 16 9
yandex.ua 57 6

(c) read

them. These have a significantly increased attack surface over sites
that operate in isolation, as compromising any of a site’s trusted
communication partners is sufficient to attack the site itself. Fortu-
nately, we found that blindly evaling postMessages is a technique
which is decreasing in popularity in favor, e.g., of parsing JSON
with the JSON.parse functionality of JavaScript.

Similar to the execute privilege, Table 4b and Table 5b show
the sites which are trusted by most others and which trust most
others to modify storage (i.e., set arbitrary cookies or Local Storage
entries), respectively. Not surprisingly, we again find both Facebook
and Twitter in the top trusted sites, primarily based on the implicit
trust in those parties. Overall, we find that even the most trusted
sites only affected a handful of origins, which indicates that prior
work on insecurity of postMessages [26] has primed developers
to not blindly trust data originating from third parties. We note
here explicitly that in our investigation, we also found instances of
handlers where an adversary could only control the content of a pre-
defined cookie or Local Storage item; however, we excluded these
from our analysis (as this does not allow for arbitrary changes).
On the receiving end, we find that highly-interconnected sites
like wp.pl allow up to 66 origins from 33 other sites arbitrary
modifications of their persistence APIs.

Last, but not least, we focus on CORS read privileges. We note
here that a site is marked as having provided CORS-enabled read
access as long as a single URL sends appropriate CORS headers. In
particular, given the blackbox nature of our analysis, we cannot
determine whether the data read from said URL has a specific
security impact or not. Notably though, this is in line with other
works on CORS, which merely checked the existence of CORS
headers when scanning the start pages [4, 8]. In terms of sites that
are most trusted by others (shown in Table 5c), tmz.com trusts
most others, almost all of them some form of news site. Notably,
these relations were all found with our extended method of using
CSP, Flash, and Silverlight policies to augment the analysis; i.e.,
the trust relations could not be observed during mere crawling.
Nevertheless, as long as an attacker can compromise any of the

trusted sites, they may gain read access to tmz.com (and likewise
for others). Focussing on the sites that have read access to most
other sites (Table 4c), alicdn.com stands out. However, the large
number of domains is only related to the fact that alicdn.com is
whitelisted by numerous shops belonging to the Alibaba network.
While we could not find any vulnerabilities on alicdn.com itself,
it is security best practice to outsource non-vital functionality to
a CDN; as a client-side compromise of such a CDN seemingly has
no security impact then. However, as this example shows, finding
an XSS flaw in the CDN would in fact enable authenticated read
access from numerous shops.

5.4 Case Studies
In this section, we discuss case studies which highlight the dangers
associated with the trust put into other parties. Note that these are
hypothetical cases that highlight patterns of problems. We discuss
real-world exploitability through a Web attacker in Section 5.5.

5.4.1 American Express. As discussed in the previous section, Amer-
ican Express is among the high-profile sites that use domain re-
laxation on its main page. When investigating this further, we
discovered that in our crawls, we visited a total of 35 different ori-
gins belonging to americanexpress.com. Notably, only the main
page (namely, www.americanexpress.com) made use of domain
relaxation, relaxing to the registrable domain. This is interesting
from both a security and a functionality perspective. Given that no
other origin we observed in our crawls applies domain relaxation,
there is seemingly no reason for the main page to relax its domain.
Since the desired goal is that subdomains with a common parent can
communicate, one might expect to observe at least one additional
subdomain relaxing its domain as well. Hence, the usage seems to
be somewhat moot from a functionality point of view. Naturally,
our analysis does not guarantee full coverage of all subdomains
and hence might have missed the necessity of domain relaxation.
However, there are 34 subdomains which are trusted with execute.
Looking up the IPs associated with these domain names, we find
that they are spread across 12 Autonomous Systems, belonging

if (0 == event.data.indexOf("checkKameleoonScriptPresent")){
if ("https://back-office." +

Kameleoon.Internals.configuration.DOMAIN == event.origin) {↪→

var obtainScriptInstallationCode =

event.data.replace("checkKameleoonScriptPresent", "");↪→

eval(obtainScriptInstallationCode);
}

}

Figure 5: Excerpt of Kameleoon’s postMessage handler

to 8 different entities. This adds ample attack surface to compro-
mise a single subdomain, allowing an attacker to pivot to the main
page. Furthermore, it highlights the danger associated with doc-
ument.domain, as different parties may be hosting subdomains
which are implicitly trusted by using the API. Next to this, the sub-
domain travel trusts four origins from other sites (two of which
belong to American Express) to execute code via a postMessage,
hence opening a second attack vector through the subdomain.

5.4.2 Kameleoon. During our manual inspection of potentially
exploitable postMessage handlers, we came across JavaScript code
from a certain domain which is included on multiple origins. The
distributor is kameleoon.com [2] and the script is included within
top ranked sites like lefigaro.fr, nespresso.com, and welt.de.

Every customer of Kameleoon needs to add scripts to its page
to be able to use the functionality offered by Kameleoon. This
collection of JavaScript code also contains a postMessage handler
(see Figure 5) which is using the eval to execute code sent by the
Kameleoon backend https://back-office.kameleoon.com. So,
on the one hand, Kameleoon can execute arbitrary JavaScript in
the origin of the customers (which seems to be intended). On the
other hand, this will also lead to a mass exploitation of Kameleoon
customers if the backend server hosting the configuration Web
page for customers can be exploited using any kind of XSS flaw.

It is worth noting that the problem is introduced through a script
hosted by Kameleoon and included by its customers. While this
already implies that the customers trust Kameleoon to deliver non-
malicious code to them (as was explored as the threat model in
prior works [15, 23, 25]), an attacker merely has to find an XSS in
Kameleoon’s backend, rather than needing to compromise their
server. As indicated earlier, Acunetix found XSS flaws in about 30%
of the tested applications for their 2019 security report [3], whereas
only 2% and 5% suffered from RCE or overflows, respectively, which
would allow for a server-side compromise.

Overall, 44 origins across 19 sites are affected. During our crawl,
we only had a fraction of all possible Kameleoon customers in the
initial 5,000 sites. The impact of such a problematic and dangerous
method is much more significant when taking all customers of
Kameleoon into account. Likely the customer list [1] is just an
excerpt and thus can be seen as a lower bound. We also note that
the handler is registered via third-party code; i.e., many customers
may be unaware of the extended attack surface to their application.

5.4.3 Advertisement Sandbox Domains. One common assumption
is that the impact of a Cross-Site Scripting flaw can be mitigated
through usage of sandbox domains. In particular, assuming that on
such a domain there is no relevant information (e.g., cookies) which
could be stolen, an XSS is not a problem. However, if another origin

or site puts trust into a sandboxed domain, compromising that
domain again becomes interesting for an attacker. One such origin is
https://ads.pubmatic.com. Pubmatic is a supply-side platform
(SSP) that allows publishers to sell their ad space to customers.
Pubmatic uses its domains to deliver the content to the customers,
and to facilitate the realtime bidding for ads, so the customers
need to communicate with the SSP. In total, ads.pubmatic.com is
trusted by 36 origins across 10 sites, which are susceptible to an
attack given that Pubmatic is compromised (e.g., through an XSS).

Next to Pubmatic, we found several other instances of sandbox
domains which are trusted to provide code to others. Among them,
we found seemingly contentless domains such as c.betrad.com,
assets.bounceexchange.com , and cdn3.doubleverify.com.

5.4.4 Trusting Lower-Ranked Sites. As discussed by Van Goethem
et al. [32], the rank of a site is often a proxy to their level of security.
Thus, a lower-ranked site might be easier to attack through an XSS
or compromised inclusion than a higher-ranking site. To that end,
we checked our data set for trust relations towards sites with a
lower rank. Out of the 9,611 nodes with outgoing trust relations,
we can detect 195 nodes (pertaining to 22 sites) which can act as
a starting point to reach higher-ranked nodes. Using these nodes
we can reach 52 sites using an execute relation, 95 sites using a
read relation and 34 sites using a change persistence relation. This
highlights that highly-ranked sites in several instances trust lower-
ranked sites, thereby enabling an enlarged attack surface for their
own application.

5.5 Real-World Exploitability
Conducting the crawl and the additional analyses as discussed, we
now have a graph of origins with the individual trust relations
between them. This now allows us to answer our third research
question: In the face of a Web attackers, how vulnerable can a site
be? To that end, we leverage our graphs and detect vulnerable paths.
Vulnerable paths are defined as several subsequent execute relations
with an optional read or change persistence at the end. For every
node, we look for relationships to other nodes and save them in
a list, including their parent. If we reached a node via execute, we
recursively apply the algorithm for all nodes related to it (except its
parent). This way, when the algorithm terminates, we can assess
the impact that compromising each node in the graph could have.

For our attacker, we consider a Web attacker in the classical
sense, meaning they can lure a victim to their site and hence force
the victim’s browser to load any page in an iframe or a popup.
Therefore, if the attacker has knowledge about an XSS flaw in any
document belonging to some origin O, they can force the victim’s
browser to load the corresponding URL with the exploit payload.
Hence, when O is compromised, the attacker can traverse the graph
by following all outgoing execute privilege edges. This process
can be recursively done until no more outgoing execute edges are
available for traversal. Apart from this, any node in the graph which
can be reached via execute privileges and has outgoing read edges
moreover enables the attacker to read content from these sites.

While it is infeasible to know all sites that are vulnerable to an
XSS, we can nevertheless resort to using publicly available tools
to detect XSS. Arguably, though, testing for server-side XSS flaws
may require multiple requests as the server-side components are a

blackbox. Additionally, this may have unwanted side effects, such
as accidentally storing an XSS payload in case of persistent server-
side XSS flaws. Hence, we resort exclusively to looking for reflected
client-side XSS. We rely on the taint engine from Lekies et al. [19]
and the exploit generator from Steffens et al. [28], which are both
available on Github [5], for this purpose. In particular, we scanned
our dataset of 5,000 domains with the original parameters, i.e., up
to 1,000 subpages and a depth of 2. Overall, we detected XSS flaws
on 1,376 origins, out of 333 have at least one other origins that trust
them with execute, change persistence or read privileges.

Figure 6 shows an excerpt of the resulting graph, specifically
those nodes that can be compromised through the Web attacker,
but do not themselves carry an XSS. Note that the graph does
not show all document.domain relations, simply because of do-
mains such as focus.cn, which has an XSS in eight origins, which
can affect 290 additional origins through document.domain. Fo-
cussing on those cases where an attacker can leverage the XSS to
pivot to an XSS-free origin, two sandbox origins highlight the dan-
gers of trust relations, specifically https://ads.pubmatic.com
and https://eus.rubiconproject.com. The existing XSS flaws
can be used to pivot to three (Pubmatic) and five (Rubicon) other
domains’ origins, respectively. For Rubicon, the ability to attack,
e.g., finance.detik.com also enables the attacker to conduct a
subsequent read to connect.detik.com, which is otherwise out
of reach. Similarly, compromising d3.sina.com.cn allows the at-
tacker to pivot to finance.sina.com.cn, which in turn enables
read access to licashi.sina.com.cn.

Furthermore, we find that the vulnerabilities in the Russian and
Turkish version of Yandex’ sites enables a cross-origin read to many
of their other origins. Note shown in the graph are other attack vec-
tors like for case.edu, in which the XSS on webapps.case.edu can
be used to attack the job application portal employment.case.edu
through the usage of document.domain. Finally, the change per-
sistence privilege occurs less frequently overall. Nevertheless, we
find that both the aforementioned ad sandbox domains have this
privilege (shown in green in the graph).

We would also like to stress that our results must be considered
lower bounds, as we only scanned in a fully automated fashion
for a single class of XSS. Considering that even google.com was
recently prone to an XSS [22], we strongly believe that a significant
fraction of sites that others put trust into can be compromised;
leading to the chain reactions described in our work.

5.6 Limitations
Like every work using crawler, we are limited by three main factors:
lack of logins, unknown coverage of available URLs, and unknown
code coverage of the client-side code. The first specifically impacts
our analysis regarding CORS, as having read access to unprivi-
leged data (as the crawler is not logged in) might not prove to
be dangerous. We share this limitation with prior work related to
CORS [4, 8]. In addition, we naturally could not crawl all pages
on a given site due our limitation of depth 2 and up to 1,000 links.
Third, and maybe most importantly, our analysis does not guar-
antee code coverage of the JavaScript, i.e., we might have missed
relevant postMessages (and the functions processing the received
data) as well as invocations of document.domain.

In addition, our notion of implicit trust may over-approximate
the gravity of the situation. Given that some postMessage handlers
did not have an origin check, we estimate trust by observing ex-
changed messages. This is based on the assumption that we are not
being attacked when crawling. Importantly, though, if a page has
multiple event handlers, not all messages are necessarily meant for
all handlers. Although our methods allow us to trace which func-
tions were executed when a given postMessage was handled, we
found that there is often no difference in called functions between
messages seemingly meant for that handler and those which are
not. This is because either a dispatcher just forwards all messages,
or all functionality is handled within the receiver. In both cases,
there is no difference in the code execute in handling an incoming
message. We nevertheless argue that given the complete lack of
origin checks, this is a best-effort approximation.

6 DISCUSSION
In Web security, the main security concept is often to ensure that
only benign code is executed. This includes mechanisms such as
Content Security Policy, which ensures only developer-specified
code can be executed, or Subresource Integrity (SRI) which aims
at ensuring that remote scripts will only be executed if their cryp-
tographic hash matches what is expected. This way, SRI prevents
that a compromised third-party server delivers malicious JavaScript
to the including site. In particular, SRI therefore defends against
a server-side compromise, yet is powerless in the case of our at-
tack scenario, in which an attacker can abuse the trust put into the
client-side code running in a particular origin. This holds true for
the case of postMessages, where the sender needs to trust another
origin to deliver only benign messages, as well as for CORS, where
a server allows an origin which executes JavaScript code in the
browser of the user.

While our work may well over-approximate the trust put into
others (given that in case of a non-existing origin check we assume
a handler would handle messages from all communication partners
observed in our crawl), we nevertheless believe this to be an over-
looked problem in prior work. The Web’s dynamic nature requires
methods of exchanging data between origins and the postMessage
API provides meaningful ways to ensure that trust can be made
explicit through origin checks. However, as we have shown, this
leads to security problems in practice, especially if other sites are
allowed to send code which gets executed. This is aggravated by the
fact that many such snippets (like the example of Kameleoon) are
third-party provided, meaning the first party may not even be aware
of it. Hence, to mitigate such issues, instead of allowing for string-
to-code conversion through usage of eval, postMessage handlers
should be used to call well-defined APIs. Looking in particular at
the messages exchanged between Kameleoon and their customers,
we find that the critical functionality using eval is used in many
messages to load entire libraries. While this enables Kameleoon to
be very flexible in delivering updates to their code base, it must be
considered bad practice.

Countermeasures. Rather than implementing library loading by
evaling a postMessage, loading of additional code could also be
implemented through the programmatic addition of a remote script.
This still leaves the sending party with the flexibility to execute any

yandex.ru www.yandex.kz

www.yandex.ru

frontend.vh.yandex.ru

www.yandex.ua

ivona.bigmir.net otvet.bigmir.net

weather.bigmir.net
finance.bigmir.net

auto.bigmir.net
video.bigmir.net

www.picmonkey.com cdn.fastly.picmonkey.com

entertain.v.daum.net

api.v.daum.net

auto.v.daum.net

www.ibm.com developer.ibm.com

www.yy.com wap.yy.com

sport.detik.com

connect.detik.com

finance.detik.com

wolipop.detik.com

health.detik.com

www.miaminewtimes.com www.tmz.com

finance.sina.com.cn licaishi.sina.com.cn

tv.sohu.com my.tv.sohu.com

v.sogou.com

pm

slugger.afreecatv.com help.afreecatv.com

sotong.afreecatv.com

afevent.afreecatv.com

vod.afreecatv.com

aqua.afreecatv.com

yandex.com.tr www.yandex.com.tr

aile.yandex.com.tr

soft.yandex.com.tr

reklam.yandex.com.tr

www.inquirer.com media.inquirer.com

practice.geeksforgeeks.org auth.geeksforgeeks.org

eus.rubiconproject.com

pm

pm

pm

pm

immobilier.lefigaro.fr
pm

sante.lefigaro.fr

pm

madame.lefigaro.fr

pm

avis-vin.lefigaro.fr

pm

leparticulier.lefigaro.fr

pm

sport24.lefigaro.fr

pm

www.milliyet.com.tr

pm

www.hurriyet.com.tr

pm

resultados.as.com

pm

www.dallasnews.com

www.kompasiana.com

ads.pubmatic.com

pm

pm

etudiant.lefigaro.fr
pm

pm

www.trend-chaser.com

www.mynet.com

pm

yastatic.net www.mos.rupm

1boon.daum.net

dd

dd

blog.sina.com.cn

dd

d3.sina.com.cn

dd

stock.sohu.com

dd

dealer.auto.sohu.com

dd

db.auto.sohu.com

dd

Figure 6: Real-World Exploitability Graph, showing domains with confirmed XSS (red) and their capabilities towards other
nodes, specifically execute (red edges), read (blue edges), and change persistence (green edges). Graph does not contain attack
surface through document.domain if this cannot be used to pivot elsewhere.

code of their choosing, yet the postMessage handler could simply
check the script’s URL against a list of allowed origins. While this
may still leave pages vulnerable in case of open JSONP endpoints
on those allowed origins [34], it significantly reduces the attack
surface. For cases in which eval is used to parse JSON, the obvious
solution is to use JSON.parse instead.

In addition to the classical cases of direct code execution through
postMessages handlers employing eval [26], we also investigated
whether incoming postMessages may lead to change in persis-
tence APIs. This is particular dangerous given the fact that prior
works [18, 28] have shown that client-side application increasingly
rely on such persistent storages to persist state or even cache code.
Although we could not find any sites that were prone to a persistent
client-side XSS and had a postMessage handler which enabled arbi-
trary storage manipulation, our manual analysis might not have
revealed all relevant handlers. In addition, we believe that the trends
identified by these prior works hint at the fact that usage of client-
side storage is on the rise, likely leading to exploitable flaws in the
future. Similarly to the execute of incoming messages through eval,
it also seems that allowing a remote party to arbitrarily set both
key and value of a persistence item is merely a feature aimed at
being as flexible as possible. Hence, if a postMessage handler really
needs to modify such storages, the keys should not be selectable
by the postMessage sender, but rather be well-defined upfront. In
general, though, compared to the results of Son and Shmatikov
[26], the security of postMessage handlers seems to have increased,
especially with respect to conducting origin checks.

As far as the usage of the dreaded document.domain API goes,
Google engineers have already called for its deprecation [35]. We
second that opinion, given that postMessages enable a well-defined
mechanism to check for sending origins, and also enable fine-
grained handling of incoming messages; where domain relaxation
directly enables a malicious subdomain to execute arbitrary code.
As our data has shown, not only do a number of high-profile sites
relax their domain on the main page, but more importantly the
example of American Express has shown that not all subdomains
of a given domain may reside on the same servers. Hence, usage of
this mechanism may expose a Web application to much more harm
than the good it does for cross-origin communication.

Responsible Disclosure. Given that our XSS findings were discov-
ered with pre-existing tools and notifications had been conducted
by prior works already [20, 28], we only reported those flaws for
which explicitly name the origins in the paper. As for the dangerous
trust relations, we plan to inform those sites that are trusted (such
as Kameleoon) to reconsider their dangerous practices, as the sites
themselves have little control over this functionality.

7 RELATEDWORK
In this section, we describe prior work focused on analyzing security
mechanisms aimed at protecting cross-origin communication and
describe how our work differs from them.

CORS
The first one to point out the insecurity of the CORS configura-
tions in the wild was Kettle [17]. He discussed several potential
misconfigurations, ranging from blind reflection of origins to null

origins. His results were picked up by Müller [21], who built a
scanner aimed at detecting several of these misconfigurations [8].
Building on these works, Chen et al. [4] investigated both the state
of CORS on theWeb and the implementation difference in browsers,
showing that over a fourth of all sites had some CORS issue.

All these works, however, focus on the insecurity of CORS
through improper configuration and implementation issues in ma-
jor browsers. In contrast, our work investigates the explicit trust
enabled by CORS, i.e., we explicitly disregard misconfigurations.
Given this threat model, we rely on additional sources of informa-
tion for a more targeted CORS configuration checking, such as CSP,
Flash, and Silverlight policies.

postMessages
In 2013, Son and Shmatikov [26] performed an in-depth analysis
of the postMessages mechanism in the wild. Similar to the works
on CORS, their analysis focussed on finding missing or incorrectly
implemented origin checks in postMessage handlers, finding 84
high-profile sites to be susceptible to an XSS. Stock et al. [31] in-
vestigated the top 500 sites over time using the Internet Archive,
finding that over half the sites that received a postMessage have at
least one handler without an origin check. Yang et al. [38] showed
that postMessages are a danger in Webviews on Android, enabling
so-called origin stripping attacks. Guan et al. [14] investigated the
dangers of having multiple postMessage event handlers in the same
page. In their attack scenario called DangerNeighbor, they showed
that a malicious handler may intercept secret information. To stop
such attacks, they propose to use encryption of messages, where
only the intended handler knows the key. In concurrent work, Stef-
fens and Stock [27] proposed PMForce, an automated system to
test postMessage handlers for vulnerabilities. PMForce was not
available at the time of our experiments, but future work can rely
on it (instead of manual analysis) to reproduce our results.

Our work is orthogonal to these works, as we again explicitly
look for trusted sites exchanging data. Notably, the proposed solu-
tion of using cryptographic means is infeasible to protect against
our threat model, as the key material would have to be available in
the client-side code of the vulnerable trusted site (as postMessages
are usually generated from data only available at runtime).

Other Types of Trust on the Web
Prior research has also focussed on understanding the implications
of trust on other layers of the Web. In 2012, Nikiforakis et al. [23]
showed how sites increasingly rely on and trust others to deliver
their JavaScript. More recently, Ikram et al. [15] investigated the
chain of implicit trust, i.e., which other parties’ JavaScript is in-
cluded by directly trusted third parties. With respect to JavaScript
on the server side, Zimmermann et al. [39] showed how dependen-
cies in the node.js ecosystem endanger the security of widely-used
libraries. More generally, Simeonovski et al. [25] investigated how
trusted others to host infrastructure (e.g., email servers) can endan-
ger sites’ security.

In contrast to our work, these papers concern themselves with
JavaScript inclusions and dependencies. Instead, we focus on client-
side mechanisms for data exchange and the dangers associated with
trusting other sites to deliver code and data via these mechanisms.

Client-Side XSS
Arguably, a postMessage handler that allows for execution of Java-
Script from an incoming message constitutes an XSS flaw. As it is
purely caused by client-side code, we here list relevant works in
detection of client-side XSS. The topic of reflected client-side XSS
has been studied by many papers [7, 19, 20, 29, 30]. In our work, we
rely on the taint engine used in [19] as well as the exploit generator
made publicly from Steffens et al. [28]. Our paper augments the
findings of prior work by showing that even though origin checks
are done, sites can still be attacked through those sites they trust.

8 CONCLUSION
Much research in previous years has focussed on securing individ-
ual applications or defending against server-side compromise of
third parties. In our work, we looked specifically at attacks which
are enabled by the trust that sites need to put into others. Coming
back to our research questions, we first find that the overwhelming
majority of sites rely on some form of cross-origin communica-
tion method. Second, we have shown that this trust can lead to
situations in which sites can be compromised by other sites they
put their trust in. This holds for communication via postMessages
as well as for usage of domain relaxation. In particular, we could
show that the mechanism of domain relaxation opens a site up to
additional attack vectors if subdomains are hosted by other parties.
Finally, we map our results to real-world exploitability through
automated detection of client-side XSS flaws, showing that even
seemingly unimportant sites such as advertisement sandbox do-
mains can cause severe damage to other sites. Given the insights of
our work, we especially call on third-party JavaScript vendors to
build their mechanisms such that they use well-defined APIs rather
than simply evaling code coming from a trusted site.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback. In particular,
we thank our shepherd Manuel Egele for his guidance and support
in preparing the final version of the paper. The authors would also
like to thank Marius Steffens and Sebastian Roth for their help in
manual validation of potentially vulnerable postMessage handlers.

REFERENCES
[1] Kameleoon Customers Page - Site with references to customers of Kameleoon.

https://www.kameleoon.com/en/customers/, 2019.
[2] Kameleoon Main Page - Platform for AI personalization and A/B testing. https:

//www.kameleoon.com/, 2019.
[3] Acunetix. Web application vulnerability report 2019. https://cdn2.hubspot.net/

hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf, 2020.
[4] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson, and

Min Yang. We Still Don’t Have Secure Cross-Domain Requests: an Empirical
Study of CORS. In USENIX Security, 2018.

[5] CISPA. "Exploit generator and Taint Engine to find persistent (and reflected)
client-side XSS". https://github.com/cispa/persistent-clientside-xss.

[6] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer. mitmproxy - free and
open source interactive HTTPS proxy. https://mitmproxy.org.

[7] Stefano Di Paola. DominatorPro: Securing Next Generation of Web Applications.
https://dominator.mindedsecurity.com/, 2012.

[8] Horst Görtz Institute for IT-Security. CORS misconfigurations on a large
scale. https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-
on-large-scale.html, 2017.

[9] Mozilla Foundation. connect-src, Content Security Policy Level 3, 2016. On-
line at https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-
Security-Policy/connect-src, 2019.

[10] Mozilla Foundation. Subresource Integrity - MDN. Online at https://developer.
mozilla.org/en-US/docs/Web/Security/Subresource_Integrity, 2019.

[11] Google. Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-
protocol/, .

[12] Google. Puppeteer Documentation. https://github.com/GoogleChrome/
puppeteer/blob/master/docs/api.md, .

[13] Chong Guan, Kun Sun, Zhan Wang, and WenTao Zhu. Privacy breach by ex-
ploiting postmessage in html5: Identification, evaluation, and countermeasure.
In AsiaCCS, 2016.

[14] Chong Guan, Kun Sun, Lingguang Lei, Pingjian Wang, Yuewu Wang, and Wei
Chen. DangerNeighbor attack: Information leakage via postMessage mechanism
in HTML5. Computers & Security, 2019.

[15] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. The chain of implicit trust: An analysis of the web third-
party resources loading. In The World Wide Web Conference, pages 2851–2857,
2019.

[16] Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. Reliable
protection against session fixation attacks. In ACM SAC, 2011.

[17] James Kettle. Exploiting CORS misconfigurations for Bitcoins and bounties,
2016. https://portswigger.net/research/exploiting-cors-misconfigurations-for-
bitcoins-and-bounties/.

[18] Jiyeon Lee, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. Pride and
Prejudice in Progressive Web Apps: Abusing Native App-like Features in Web
Applications. In CCS, 2018.

[19] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: Large-scale
detection of DOM-based XSS. In CCS, 2013.

[20] William Melicher, Anupam Das, Mashmood Sharif, Lujo Bauer, and Limin Jia.
Riding out DOMsday: Toward detecting and preventing DOM cross-site scripting.
In NDSS, 2018.

[21] Jens Müller. A simple CORS misconfiguration scanner. https://github.com/RUB-
NDS/CORStest, 2017.

[22] Tomasz Andrzej Nidecki. Mutation xss in google search. https://www.acunetix.
com/blog/web-security-zone/mutation-xss-in-google-search/, 2019.

[23] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote javascript inclusions. In
ACM CCS, 2012.

[24] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. Tranco - A Research-Oriented Top Sites Ranking
Hardened Against Manipulation https://tranco-list.eu/list/VQXN. In NDSS, 2019.

[25] Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, andMichael Backes.
Who controls the internet? analyzing global threats using property graph traver-
sals. In WWW, 2017.

[26] Sooel Son and Vitaly Shmatikov. The Postman Always Rings Twice: Attacking
and Defending postMessage in HTML5 Websites. In NDSS, 2013.

[27] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing postmessage
handlers at scale. In CCS, 2020.

[28] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t Trust The
Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site Scripting
in the Wild. In NDSS, 2019.

[29] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
Precise client-side protection against DOM-based cross-site scripting. In USENIX
Security Symposium, 2014.

[30] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Martin Johns.
From facepalm to brain bender: Exploring client-side cross-site scripting. In CCS,
2015.

[31] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. How the web
tangled itself: Uncovering the history of client-side web (in)security. In USENIX
Security, 2017.

[32] Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter
Joosen. Large-scale security analysis of the web: Challenges and findings. In
TRUST, 2014.

[33] W3C. Cross-Origin Resource Sharing - W3C Recommendation. https://www.w3.
org/TR/cors/, January 2014.

[34] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. Csp
is dead, long live csp! on the insecurity of whitelists and the future of content
security policy. In ACM CCS, 2016.

[35] Mike West. https://twitter.com/mikewest/status/1143431982560493568, 2019.
[36] WHATWG. HTML Living Standard - 9.4 Cross-document messaging. https:

//html.spec.whatwg.org/multipage/web-messaging.html, 2020.
[37] WHATWG. Origin Specification. https://html.spec.whatwg.org/multipage/origin.

html, May 2019.
[38] Guangliang Yang, Jeff Huang, Guofei Gu, and Abner Mendoza. Study and miti-

gation of origin stripping vulnerabilities in hybrid-postmessage enabled mobile
applications. In IEEE S&P, 2018.

[39] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem.
In USENIX Security Symposium, 2019.

https://www.kameleoon.com/en/customers/
https://www.kameleoon.com/
https://www.kameleoon.com/
https://cdn2.hubspot.net/hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf
https://cdn2.hubspot.net/hubfs/4595665/Acunetix_web_application_vulnerability_report_2019.pdf
https://github.com/cispa/persistent-clientside-xss
https://mitmproxy.org
https://dominator.mindedsecurity.com/
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/connect-src
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md
https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties/
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties/
https://github.com/RUB-NDS/CORStest
https://github.com/RUB-NDS/CORStest
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://tranco-list.eu/list/VQXN
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/
https://twitter.com/mikewest/status/1143431982560493568
https://html.spec.whatwg.org/multipage/web-messaging.html
https://html.spec.whatwg.org/multipage/web-messaging.html
https://html.spec.whatwg.org/multipage/origin.html
https://html.spec.whatwg.org/multipage/origin.html

	Abstract
	1 Introduction
	2 Threat Model and Problem Scope
	3 Cross-Origin Data Exchange
	3.1 Domain Relaxation
	3.2 postMessages
	3.3 Cross-Origin Resource Sharing

	4 Collecting Trust Relations
	4.1 Collecting One-to-One Relations
	4.2 Linking the Collected Data

	5 Results of Large-Scale Analysis
	5.1 Usage of Cross-Origin Mechanisms
	5.2 Collected Trust Relations
	5.3 Impact Analysis
	5.4 Case Studies
	5.5 Real-World Exploitability
	5.6 Limitations

	6 Discussion
	7 Related Work
	8 Conclusion
	References

