
ScriptProtect: Mitigating Unsafe
Third-Party JavaScript Practices

Marius Musch
TU Braunschweig

Marius Steffens
CISPA Helmholtz Center for

Information Security

Sebastian Roth
CISPA Helmholtz Center for

Information Security

Ben Stock
CISPA Helmholtz Center for

Information Security

Martin Johns
TU Braunschweig

ABSTRACT
The direct client-side inclusion of cross-origin JavaScript resources
in Web applications is a pervasive practice to consume third-party
services and to utilize externally provided libraries. The downside of
this practice is that such external code runs in the same context and
with the same privileges as the first-party code. Thus, all potential
security problems in the code directly affect the including site. To
explore this problem, we present an empirical study which shows
that more than 25% of all sites affected by Client-Side Cross-Site
Scripting are only vulnerable due to a flaw in the included third-
party code.

Motivated by this finding, we propose ScriptProtect, a non-
intrusive transparent protective measure to address security is-
sues introduced by external script resources. ScriptProtect au-
tomatically strips third-party code from the ability to conduct un-
safe string-to-code conversions. Thus, it effectively removes the
root-cause of Client-Side XSS without affecting first-party code
in this respective. As ScriptProtect is realized through a light-
weight JavaScript instrumentation, it does not require changes to
the browser and only incurs a low runtime overhead of about 6%.
We tested its compatibility on the Alexa Top 5,000 and found that
30% of these sites could benefit from ScriptProtect’s protection
today without changes to their application code.

CCS CONCEPTS
• Security and privacy→ Web application security.

KEYWORDS
Client-Side XSS; Countermeasure; Web Security
ACM Reference Format:
Marius Musch, Marius Steffens, Sebastian Roth, Ben Stock, andMartin Johns.
2019. ScriptProtect: Mitigating Unsafe Third-Party JavaScript Practices.
InACMAsia Conference on Computer and Communications Security (AsiaCCS
’19), July 9–12, 2019, Auckland, New Zealand. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3321705.3329841

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6752-3/19/07. . . $15.00
https://doi.org/10.1145/3321705.3329841

1 INTRODUCTION
Modern Web applications consist of functionality originating from
many different parties. To allow for easy integration into existing
sites, such third-party functionality is often added via client-side
JavaScript code. This is enabled by the fact that sites may include
external JavaScript from other origins, which is subsequently exe-
cuted in the origin of the including site. Hence, such code runs with
full privileges, e.g., can modify the DOM to add a frame pointing
to an advertisement or observe user interaction for analytic pur-
poses. Apart from ads and analytics, other use cases for third-party
code include location services, social media integration, or support
functionality.

At the same time, the insecure usage of attacker-controllable
data in functions like eval or document.write may cause a DOM-
based or Client-Side XSS flaw [17, 18]. Given the model of including
scripts from other parties, Client-Side XSS flaws in third-party code
result in vulnerabilities that directly affect the including Web site.
The most recent study by Melicher et al. [18] has shown that this
threat is still widespread in modern Web applications. Moreover,
as an earlier work from Stock et al. [32] has shown, a significant
fraction of the exploitable flaws is caused by third-party content.

The first-party code is under the control of the site’s developer,
who may employ secure coding practices to avoid vulnerabilities or
use tools to find and patch them [23]. In contrast, the developer has
no control over third-party code and cannot address vulnerabilities
in included code. Specifically, if a third-party script is included, it has
the power to add additional scripting content to the including site.
Our results show that a significant fraction of the Client-Side XSS
flaws is caused by such third-party code. Thus, vulnerabilities are
introduced in otherwise secure Web sites merely by the inclusion
of such a benign-but-buggy script.

Based on this finding, we propose a lightweightmitigationmethod
dubbed ScriptProtect. At its core, ScriptProtect ensures that
third-party code is unable to accidentally add unsafe markup into
a document. By transparently instrumenting problematic APIs,
ScriptProtect can simply be included by a developer as an exter-
nal script resource before any other external script is loaded. When
such a problematic API, e.g., document.write is invoked, Script-
Protect uses filters on the markup to be written to ensure that
no script code can be added by third parties, making it secure-by-
default. If needed, ScriptProtect also provides a reference to the
original, unsafe API to the first party under a new name, making
the insecurity explicit. While we envision ScriptProtect to be used
when developing new applications, we also evaluate the feasibility

https://doi.org/10.1145/3321705.3329841
https://doi.org/10.1145/3321705.3329841

of retroactively applying it to existing applications (without any
changes to that application). In particular, we investigate its com-
patibility with Web sites in the Alexa Top 5,000 and discuss these
results as well as potential future improvements.

To sum up, we make the following contributions:
(1) We show that a significant amount of Client-Side XSS vulner-

abilities are solely caused by third-party code (Section 2.3).
(2) Motivated by this finding, we present ScriptProtect, an

easy-to-deploy solution to protect sites from vulnerabilities
in third-party code (Section 3). The full implementation is
available on Github1.

(3) We analyze the compatibility of ScriptProtect and show
that 30% of the Alexa Top 5,000 could be protected by the
mere inclusion of our script, without breaking existing func-
tionality (Section 4).

2 UNDERLYING PROBLEM
Cross-Site Scripting (also called XSS) is a class of code-injection
vulnerabilities in the browser. Web applications run in a protected
environment, such that only code from the same origin as the ap-
plication can interact with it. Therefore, the goal of an XSS attacker
is to execute arbitrary JavaScript code in the browser of his victim,
in the context (or origin) of the vulnerable Web page. If successful,
this allows him to conduct any action in the name of the victim-
ized user, e.g., using the application as the user or retrieving secret
information such as cookies.

From a conceptual standpoint, Cross-Site Scripting is caused
when an unfiltered data flow occurs from an attacker-controlled
source to a security-sensitive sink. While server-side XSS attacks
have been known for a number of years, its client-side counterpart,
i.e., Client-Side XSS, was first discussed in 2005 by Amit Klein [14]
under the term DOM-based XSS. Rather than being caused by vul-
nerable server-side code, this class of vulnerability occurs if user-
provided input is insecurely processed on the client side. In the case
of such a Client-Side XSS, the source can be, e.g., the URL, whereas
an example for a sink is eval or document.write. Both these APIs
accept strings as parameters, which are subsequently parsed and
executed as code (JavaScript and HTML, respectively). Therefore,
passing unfiltered attacker-controllable input to such functions
eventually leads to execution of the attacker-provided code.

2.1 Anatomy of a Client-Side XSS Flaw
To give an intuition of how such a flaw could look like, we consider
the example shown in Figure 1. This snippet is meant to dynami-
cally add an image to the DOM, sending both the query parameter
as well as the hash (or fragment) of the including site to the ad-
vertisement company. This snippet suffers from a Client-Side XSS
flaw, since both the query parameters and the fragment are simply
concatenated with the HTML code — without any sanitization or
encoding. All browsers handle automatic encoding of parts of the
URL differently; we consider Microsoft’s Edge, which automatically
encodes the query in location.search, but not the URL fragment in
location.hash [1]. Hence, an adversary can inject markup into the

1https://github.com/scriptprotect/scriptprotect

fragment of the URL to trigger the flaw. In this example, a specific
payload could be ’><script>alert(1)</script>, opening an alert
box. Naturally, the alert box is merely a proof-of-concept and can
be exchanged with arbitrary payloads.

The first tool developed specifically to detect such flaws was
DOMinator by Di Paola [7]. It leveraged taint tracking to follow a
client-side flow of data from an attacker-controllable source to a
dangerous sink, such as the aforementioned document.write or eval.
This idea was picked up by Lekies et al. [17], who implemented
byte-level taint tracking for the Chromium browser and used the
discovered flows as input to an automated exploit generator. With
this, they were able to automatically detect Client-Side Cross-Site
Scripting flaws in approximately 10% of the Alexa Top 5,000 do-
mains. In 2018, Melicher et al. [18] confirmed these findings with
their own taint implementation, which they open-sourced.

2.2 Third-Party JavaScript Providers
Not all flaws in a website are necessarily caused by the first party,
i.e., the Web site’s developer. HTML’s script-tag allows the di-
rect reference and subsequent inclusion of remote JavaScript files
(see Figure 2). As the inclusion of scripts is exempt from JavaScript’s
Same-Origin Policy [37], the code is downloaded by the browser
and executed in the context of the including first-party Web docu-
ment. Thus, it inherits the origin of the hosting document and runs
in the same security context as the first-party code. This is helpful
since it allows developers to, e.g., include libraries from a common
URL (such as jQuery.org), which reduces the network load on their
servers and increases the chances of the file already being cached
on the client. Moreover, it allows for seamless updates of the in-
cluded code, since changes to the third-party code are immediately
"applied" to all including sites.

At the same time, this paradigm means that whenever third-
party code carries an XSS vulnerability, any site that includes such
code is susceptible to an XSS attack. Hence, a vulnerable data flow
contained solely in third-party code causes an exploitable flaw in
every site including that code resource, even in sites which are
otherwise secure. Researchers have also shown that the number of
domains from which third-party code is included is on the rise and,
moreover, the complexity of the including JavaScript steadily rose
as well over the past 20 years [22, 30]. Given this trend, it is not
surprising that third-party code is a significant contributor to all
Client-Side XSS vulnerabilities, especially with respect to outdated
libraries [15, 18, 32].

document.write("<img src='http://ad.com/ad.jpg?query=" +
location.search + "&hash=" + location.hash + "'>");↪→

Figure 1: Example of a Client-Side XSS vulnerability

<head> <!-- HTML code delivered from https://a.com -->
<script src="https://b.com/service.js"></script>

</head>

Figure 2: Remote JavaScript inclusion

https://github.com/scriptprotect/scriptprotect

2.3 Prevalence of Third-Party Caused
Vulnerabilities

To investigate how common these third-party-caused flaws are in
the wild, we used the existing taint tracking approaches [17, 18]
to detect client-side flows in the Alexa Top 5,000. We combined
the taint tracking with our own instrumented browser based on
Chromium to detect third-party resources and to validate the ex-
ploitability of the previously collected flows. We crawled these up
to a depth of two with a maximum of 1,000 pages per site, resulting
in about 3.5 million visited pages.

In general, we found that almost 99% of the successfully crawled
sites had at least one page that included scripting resources from
third-party hosts, which leaves them susceptible to the possibly
lacking security standards of the third-party as discussed by Niki-
forakis et al. [22]. Using the aforementioned tainting methodology,
we could verify exploitability of a Client-Side XSS on 351 sites
of the Alexa Top 5,000 and an additional 122 framed sites which
were integrated into the top websites but not part of the Top 5,000
themselves. Investigating the host of the script which initiated the
vulnerable sink access shows that 129 sites are vulnerable due to
scripts originating from third-party hosts. On 37 of these, we also
found a vulnerable flow originating from the first-party code, leav-
ing us with 92 sites, which are solely vulnerable due to third-party
code. This means that with 92 out of 351, more than 25% of all
vulnerable sites are exploitable through no fault of their own, other
than the decision to include a third-party script.

Furthermore, we also investigated the cases in which a third-
party contributes to the flaw by being part of the vulnerable call
stack. We can see that this is the case on 173 of our vulnerable
351 sites. This, however, does not necessarily mean that the third-
party can be blamed for the flow, e.g., jQuery is often included from
a remote host and provides functionality (such as .html) which
eventually calls sensitive sinks. Nonetheless, it shows that nearly
every other vulnerability consists of deeply intertwined code parts
which originate from multiple different parties.

This paints a grim picture for the security-aware developer who
invests time in securing the Web applications against the threat of
XSS, only then to notice that a third party introduced a vulnerability.
Especially given that modern Web applications and their intercon-
nectivity appear to grow even further [30], it is unreasonable to
burden developers with banishing third-parties from their security
perimeter. To that end, we propose ScriptProtectwhich functions
as a lightweight drop-in solution to harden the Web application
against benign but buggy third-parties.

3 SCRIPTPROTECT
The significant amount of vulnerabilities introduced by third-party
code shows that solely hardening first-party code against XSS is of-
ten times insufficient. Instead, we would also want an environment
that prevents other parties from inadvertently introducing new
vulnerabilities. This way, we enable first-party developers to focus
on the security and functionality of their own code. Coming back
to the XSS example shown in Figure 1, we want to allow the third
party to add benign content like images (without event handlers),
but ensure they cannot add markup containing script code. Our
proposed solution called ScriptProtect is distributed as a single

First Party

<script>
benign();
</script>

<script>
attack();
</script>

eval()3

2

1

includes

Figure 3: Considered Attacker Model

JavaScript file, which the first party needs to include. ScriptPro-
tect modifies the JavaScript environment in a such a way that the
accidental introduction of a Client-Side XSS vulnerability through
a third party is prevented. This lightweight approach is easy to
deploy and does not rely on modifications to the browser, which
means ScriptProtect can be used today already.

3.1 Threat Model
Over the past decade, there have been many attempts to allow the
inclusion of third-party code without compromising the security of
the including site itself [2, 12, 25, 33]. However, these papers assume
a malicious third-party and hence require very strict isolation of
the third-party code, which in turn tends to break many use cases
like analytics and enrichment of pages in general.

In contrast, in the context of this paper, we consider the third-
party scripts to be non-malicious but vulnerable. The overview of
the potential attack scenarios are depicted in Figure 3. While the
trusted third party is meant to operate within the security bounds
of the first-party application, the attacker tries to attack in three
distinct ways. First, he can try to inject malicious inline scripts
(1). Second, when an HTML injection is possible, he can resort to
including an externally hosted JavaScript file containing his pay-
load (2). Finally, he can use the eval functionality to conduct a
string-to-code transformation and gain code execution (3). With
respect to the third party which also provides code to the applica-
tion, this means that the initially executed third-party code has no
intent of undermining our protection scheme. The attacker in this
scenario is a malicious actor, who aims to exploit the Client-Side
XSS problem, which was unwillingly introduced by the third-party
script. As such, the attacker has to perform a string-to-code con-
version while abusing an XSS flaw to introduce his new, malicious
code into the origin. Hence, while a malicious third party could
undermine our protection scheme, e.g., by getting a reference to
an unprotected version of document.write from a newly created
frame, the attacker in our scenario does not have that capability.

The honest third party, on the other hand, was trusted through
the action of including a script from its host. As such, a mali-
cious third-party has no need to circumvent our protection, e.g. of
document.write, as it can already execute arbitrary JavaScript code
without requiring additional scripts elements in the DOM. There-
fore, our goal is to prevent third parties to accidentally introduce
new code where writing passive markup (without scripts and event
handlers) to the page would be sufficient. Consequently, attacks
that involve compromising the third-party servers are out of scope
for our protection.

3.2 Concept
On a conceptual level, ScriptProtect works as follows: All poten-
tially dangerous browser APIs and properties (such as innerHTML or
document.write), which could cause Client-Side XSS vulnerabilities,
are instrumented at runtime. This is done through our protection
mechanism which is included early in the head portion of the host-
ing HTML document. After the execution of ScriptProtect’s code,
all instrumented APIs are secure-by-default, meaning they cannot be
used to add additional script content to the DOM. To allow trusted
first-party code to still leverage the script-introducing functionality
of these APIs, two strategies can be used:

New applications — Unsafe API variants. While the standard API
remains unable to introduce new script content into the web docu-
ment, ScriptProtect introduces a second version of the API (e.g.,
document.unsafeWrite) to be used explicitly by first-party code in
cases in which additional script code should be added to the docu-
ment. As these cases are in the minority and clearly marked through
the explicit usage of the unsafe versions, it is straight forward to
audit such occurrences during development to avoid vulnerabilities.
Since our threat model considers a benign-but-buggy third party,
the insecure variants of the APIs are not used by third-party code.

Existing applications — Stacktrace-based value treatment. In case
a significant code base for the target application already exists,
ScriptProtect offers the option to dynamically adapt the behavior
of the APIs and DOM properties, depending on the calling party.
In this case, the mechanism transparently checks the stack trace
of the current execution thread to obtain the top-most execution
context causing the execution chain, which then ended up in a
potentially harmful operation. If the call originally was initiated by
a trusted first-party functionality, the value is passed unaltered to
the API/property. If the original call came from a third-party script,
the value is automatically sanitized, so that no additional script
content is added to the web document.

3.3 Dangerous APIs
The purpose of ScriptProtect is to ensure that vulnerabilities
in third-party code cannot be leveraged for an XSS attack. Hence,
our security policies are set such that creation of additional script
content cannot occur, whereas other types of content injection (e.g.,
including iframes or images hosted by other domains) are outside
of our threat model.

In essence, these considerations result in a policy which strictly
forbids third-party JavaScript code to conduct string-to-code conver-
sions, i.e., the introduction of additional executable JavaScript code

that was derived or referenced from potentially untrustworthy data.
For one, ScriptProtect prevents third-party code from creating ad-
ditional script tags. Furthermore, a given third party is not allowed
to introduce code via the inline event handlers of newly introduced
HTML elements. The creation of an iframe with a srcdoc attribute
or javascript: URI is prevented, as otherwise code execution on
the origin of the first party can be achieved. Finally, ScriptPro-
tect also strips third-party code from the ability to conduct direct
string-to-code conversion via APIs like setTimeout.

There exist a variety of different APIs and DOM properties which
have the ability to introduce new code through one of the means
above. These APIs and properties can further be divided into dif-
ferent classes of functionality, types of access and accept different
kinds of inputs. In the remainder of this section, we briefly de-
scribe the characteristics of each of the classes of functionality and
conclude with a list of all dangerous APIs in Table 1.

Raw DOM content at rendering time. For one, JavaScript offers
a set of APIs which add additional HTML code to the document
directly during the initial rendering of the document. The code is
seamlessly interpreted right after the script terminates and before
subsequent HTML code is parsed/interpreted. The best known and
most widely used API here is document.write.

Runtime creation of DOM content. The next relevant class are
DOM APIs and properties that allow the alteration of the HTML
content at runtime, i.e., after the initial rendering process has ter-
minated. Unlike document.write this functionality is not provided
as a global API. Instead, it is achieved through a set of properties
and APIs which are directly attached to DOM elements. This way,
the relative location of the new content is provided implicitly. The
most used element in this class is the innerHTML property, which
on assignment inserts new HTML subtree-structures as a DOM
child of the hosting HTML element (see Figure 4). However, this
class also includes all means to modify existing DOM elements, e.g.
modifying the src attribute of a script tag.

Direct code conversion. Apart from the addition of HTMLmarkup
to the document, JavaScript code may also be executed directly.
In particular, a set of APIs and DOM properties allow the direct
conversion of string data into JavaScript code. The most used rep-
resentative of this class is the function eval.

3.4 Instrumentation of HTML Sinks
ScriptProtect is implemented in the form of a JavaScript library
that instruments dangerous APIs with HTML sinks in such a way
that all values passed to them are sanitized, before the API’s or
property’s DOM altering functionality is executed. In the context
of this paper, the process of sanitizing HTML input is regarded
as an orthogonal problem and we assume that a safe implementa-
tion exists. As the browser does not (yet) provide a native way to

var element = document.querySelector("#container");
element.innerHTML = "<div>Hello World!</div>";

Figure 4: Example usage of the innerHTML API

Table 1: APIs and properties that can introduce new
JavaScript code. Asterisks denote non-standard APIs.

DOMmodification at rendering Type Sink
document.write Global API HTML
document.writeln Global API HTML
DOMmodification at runtime Type Sink
Element.innerHTML Property HTML
Element.outerHTML Property HTML
Element.setAttribute Local API all
Element.insertAdjacentHTML Local API HTML
HTMLScriptElement.src Property URI
HTMLScriptElement.text Property JS
HTMLScriptElement.textContent Property JS
HTMLScriptElement.innerText Property JS
HTMLIFrameElement.src Property URI
HTMLIFrameElement.srcdoc Property HTML
HTMLTag.onEventName Property JS
Range.createContextualFragment Local API HTML
Direct code conversion Type Sink
eval Global API JS
Function Global API JS
setTimeout Global API JS
setInterval Global API JS
setImmediate* Global API JS
execScript* Global API JS

sanitize JavaScript values for safe DOM inclusion, we leverage the
established DOMPurify [6, 11] library for this purpose.

We achieve our protection by wrapping all functionality that
could lead to code execution so that each call to an unsafe API is
intercepted by our hook. Therefore, when deployed, ScriptPro-
tect needs to be the first script that is included into the page to
ensure all following code automatically uses the secured APIs. This
instrumentation is completely transparent to the rest of the applica-
tion: pre-existing code which intends to call the original API keeps
functioning without requiring any code changes. Each of three
types from Table 1 requires a different instrumentation strategy:

Global APIs. The reference to global APIs is readily available
after document initialization. We first preserve a link to the original
implementation for future usage with sanitized values (see List-
ing 5, line 4). Subsequently, we overwrite the global reference and
replace it with a reference to a function which first executes the
sanitizing step, before calling the original functionality to achieve
a transparent instrumentation. Please refer to Listing 5 for a full
example securing the document.write and document.writeln API.

Local APIs. In the case of the instrumentation of element-local
APIs that are directly attached to DOM node, no single global
reference to an API exists as each individual DOM element ex-
poses the API to the calling code. In this case, we have to leverage
JavaScript’s prototype-based object oriented features. All DOM
nodes are decedents of JavaScript’s Element object class. Thus, via
altering Element’s prototype, we are able to change the behavior of
all DOM nodes transparently. Figure 6 shows this process. Specifi-
cally, we get a reference to the original insertAdjacentHTMLmethod

(function() {
let old = {};
function wrap(name) {

old[name] = document[name];
document[name] = function() {

arguments = sanitizeAll(arguments);
old[name].call(document, ...arguments);

};
}
wrap("write"); wrap("writeln");

})();

Figure 5: Transparent instrumentation of global APIs

(function() {
let old = Element.prototype.insertAdjacentHTML;
Element.prototype.insertAdjacentHTML = function() {

if (arguments.length == 2) {
arguments[1] = sanitize(arguments[1]);

}
return old.call(this, ...arguments);

}
})();

Figure 6: Transparent instrumentation of local APIs

(function () {
var old = Element.prototype.innerHTML;
Object.defineProperty(Element.prototype, "innerHTML", {

set: function (val) {
val = sanitize(val);
old.call(this, val);

}
});

})();

Figure 7: Transparent instrumentation of properties

in line 2. Subsequently, we overwrite the method in the prototype
and only invoke the original variant after sanitizing the HTML
markup (passed as the second parameter to insertAdjacentHTML.
For APIs that exist only for a subclass of DOM nodes, such as the
createContextualFragment API of range elements, we instrument
the respective, more specialized prototype.

Properties. DOM properties, on the other hand, cannot be instru-
mented directly. Instead, their setter property has to be replaced
with the safe wrapper. As the DOM properties themselves are again
attached to individual DOM nodes, we have to change the elements’
prototype, similar to the element-local APIs. Figure 7 shows how
we achieve this. Object.defineProperty allows us to overwrite the
set property, i.e., the setter to be called when assigning a value to
innerHTML. We then proceed to sanitize the input and invoke the
original, stored setter.

3.5 Instrumentation of JS and URI Sinks
For APIs like eval, which directly result in code execution of the
complete string, there exists no harmless subset of inputs. This is
also true for the assignment of DOM properties that take JavaScript
code as a parameter like script.innerText. Therefore, calls to these

(function () {
let old = window.setTimeout;
window.setTimeout = function() {

//Allow only if there is no string-to-code conversion
if (typeof arguments[0] != "string") {

old.call(window, ...arguments);
}

};
})();

Figure 8: Instrumentation of setTimeout

APIs with a JS sink do not involve a sanitization step, as shown in
Figure 8. Instead, the call is completely blocked unless the introduc-
tion of new code was allowed through one of the two mechanisms
described in the following sections.

The same is also mostly true for the assignment of a URI, e.g.
script.src, with the only exception that including further scripts
from the host of third-party could be allowed as this domain is al-
ready trusted. However, allowing the inclusion of same-site scripts
has some subtle drawbacks: For one, if the third-party is a CDN,
then the attacker could abuse this to include older versions of
libraries hosted on that CDN, allowing potential script gadget at-
tacks [16]. Moreover, these might contain publicly disclosed vul-
nerabilities, which then could re-enable old attacks on patched
and up-to-date Web sites. Furthermore, it is notoriously difficult to
correctly identify the effective top-level domain. A script hosted
on *.amazonaws.com should not trust other hosts on amazonaws.com,
as they are all part of Amazon’s public cloud infrastructure and
anyone can obtain a subdomain for this domain to host malicious
scripts. This could be solved by using the public suffix list [8], which
includes a list of both official ICANN suffixes, e.g. co.jp, and pri-
vate suffixes like cloudfront.net or those for Amazon’s AWS. With
over 20,000 entries the list is rather large and weighs about 200KB,
which is about 10 times the size of ScriptProtect itself and would
have a negative impact on the loading time. While there are pub-
lic discussions of Google engineers about exposing this feature
to JavaScript2, this has not yet happened. For these reasons, we
decided to block the assignment of URIs in general and treat these
sinks in the same way as the JS sinks.

3.6 Unsafe API Variants
As previously discussed, ScriptProtect’s measures create API
variants that are secure by default. This means that if no script-
reenabling steps are taken it is impossible to introduce additional
JavaScript content into the web document. However, first-party
code might require this capability occasionally. The safest method
of enabling this functional requirement is to introduce potentially
unsafe API/property variants. In this case, the majority of the appli-
cation code uses the standard – now safe – APIs/properties. Only
in selected cases, in which the introduction of further script code
is explicitly intended, a second, newly introduced variant of the
API/property is called which allows the potentially unsafe action.
The occurrence of such cases is most likely seldom and can be
audited thoroughly, as the insecurity is now explicit.

2https://twitter.com/slekies/status/1064213702528954368

(function () {
var oldSet = Object.getOwnPropertyDescriptor(Element.prototype,

"innerHTML").set;↪→

Object.defineProperty(Element.prototype, "unsafeInnerHTML", {
set: oldSet

});
})();

Figure 9: Introduction of an unsafe innerHTML property
variant

Third-party scripts won’t use the unsafe variants, as they are
designed and implemented for standard browser functionality, and
thus, are completely safe. If third parties are aware of the unsafe
variant, they could obviously simply call that. However, as discussed
before, we assume a benign-but-buggy third party, and therefore
this threat is out of scope for our attacker model (cf. Section 3). We
expect no intentional circumvention of our protection from a party
that already has achieved code execution. Implementation-wise,
for global APIs we just attach the original, native function to a
global object outside of our instrumentation closures under a new
name like document.unsafeWrite. In case of local DOM properties,
additional properties are added to the respective element’s proto-
types (see Figure 9 for how an element’s unsafe innerHTML may
be exposed).

Using the unsafe API variants (if really necessary) is the recom-
mended way in case a new Web application is created from scratch.
However, as this change merely renames the original functionality,
this can also be used for existing applications in combination with
a rewrite proxy or static analysis tool. While giving the first party
full access to the dangerous APIs by default is not ideal, we see this
option useful for a transitional phase: access for the third party is
immediately blocked while the first-party code is rewritten to use
the unsafe variant by default. Then gradually all usages of the dan-
gerous APIs need to reviewed and, depending on each individual
case, changed to use the safe variant, if possible.

3.7 Dynamic Access Control
In case a significant code base already exists that cannot be adjusted
to use the unsafe API variants, e.g. legacy code that includes mini-
fied components, ScriptProtect supports an alternative mech-
anism that is based on dynamic access control. In this scenario,
whether or not a call to a problematic API is allowed, depends
on the party that induced that call in the first place. Calls that
originate from the first party are then routed to the original, unal-
tered API while all calls induced by a third party will use the safe,
instrumented APIs and properties.

By inspecting the current execution thread through the Error

object, we can obtain the stack trace from within JavaScript code at
runtime without requiring an external debugger. We then proceed
to extract the URL of script at the top of this call stack, as shown
in Figure 10. The script at the top of the stack trace represents the
initiator of the actions that lead to the call in the first place. If the
hostname of the script’s URL matches the first party the call is
allowed without modification. Otherwise, the function argument is
subjected to value sanitization or blocked, depending on the sink.

https://twitter.com/slekies/status/1064213702528954368

function isAllowed() {
//Extract all URLs from the stack trace
var regex = /(https?:\/\/.+?):\d+:\d+/g;
var urls = (new Error).stack.match(regex);

if (urls && urls.length > 0) {
//Use last entry and extract its hostname from URL
var topCaller = getHost(urls[urls.length - 1]);
return topCaller == location.hostname;

}
return true;

}

Figure 10: Code snippet showing how stack trace is parsed
and the top caller extracted, simplified for brevity

4 EVALUATION
Generally speaking, ScriptProtect is designed as a measure for
security-conscious operators of Web applications, who want to
prevent the introduction of vulnerabilities by third parties. As access
to the dangerous APIs and properties from Section 3.3 is common,
we expect that ScriptProtect cannot be immediately picked up
by all existing sites. Therefore, after reporting on ScriptProtect’s
performance impact we evaluate its compatibility with the sites in
the Alexa Top 5,000.

4.1 Runtime Performance
As ScriptProtect is an always-on mechanism that adds additional
access-control checks to important APIs we expect it to have some
performance impact during runtime. To evaluate this we randomly
sampled 50 different pages from a set of compatible sites with
the condition that these specific pages included at least one third-
party script. We used a 2015 Macbook Pro with a 2,2 GHz Intel
i7 processor, 16 GB RAM, running Mac OS X 10.14.1 and Google
Chrome 70.0.3538 for these experiments.

After an initial visit to populate the cache each page was visited
20 times: 10 times completely unmodified to establish a baseline
and 10 times with ScriptProtect enabled. After all these visits
we took the median for each of the two configurations to be more
resistant against outliers caused by the network or remote server.
ScriptProtect was locally injected by us, but we argue that after
the first page load it would be loaded from cache anyway. The final
overall results were obtained by averaging over the medians of all
50 pages and are shown in Table 2.

The minified version of ScriptProtect used in the evaluation
consists of 19 KB and increases the load time by about 6%. How-
ever, our proof-of-concept relies on DOMPurify to sanitize inputs
and with 14 KB most of the size is from this library, while Script-
Protect itself only weighs about 5 KB. Consequently, most of the
increase in load time is caused by the parsing and initialization
of the script itself. Fortunately, in the current standardization of
trusted types for the DOM [9] the introduction of a browser-native
sanitizer is on the roadmap [10]. Thus, as soon as this functionality
is available directly in the browser, ScriptProtect also loses DOM-
Purify’s network traffic and parsing time. In addition, it is to be
expected that a native sanitizer vastly outperforms any JavaScript
solution, further adding performance improvements.

Table 2: Performancemeasurements of ScriptProtect, show-
ing the time in milliseconds until the load event fired.

Avg. Median Std. deviation Slowdown
Baseline 1280 1278 -
ScriptProtect 1360 1377 1.06

4.2 Compatibility
Ideally, ScriptProtect is used when creating new applications.
Then, the unsafe API variants clearly indicate which code parts
could lead to vulnerabilities, aiding both manual and automated
security analysis. Still, existing applications can also profit from
the protection today without requiring any code changes by using
the trace-based inspection of calls. A site is compatible as long as
all included third-party scripts do not add additional JavaScript
(through external scripts, inline scripts, or event handlers) on their
own during normal operation. In that case, ScriptProtect would
not block any action of the third party during a normal visit without
an attempted attack — the site could add our protection without
breaking existing functionality.

4.2.1 Data collection. To analyze the compatibility of ScriptPro-
tect in the Alexa Top 5,000 we let our instrumented browsers
crawl these Web applications. However, we found that the Alexa
list contains 103 google.tld domains and a total of 82 subdomains
of tmall.com. To gravitate our analysis to a more diverse set of Web
applications we opted to skip those entries in the list for which we
either already had a site included which has the same eTLD+1 or the
same second-level domain. Additionally, we remove any entry for
which we are unable to connect to the Web application according
to the following pattern http://ENTRY. After this preparation step,
we arrive at a new list of 5,000 sites to be crawled. Our crawlers
follow each same-site link up to depth 2 with a maximum of 1,000
unique links per site. This allows us to analyze theWeb applications
in more depth than the previous approaches [17, 18] and leaves us
with around 3.5 Million pages on 4528 different sites.

On the remaining 472 sites, however, we were unable to visit
more than one link successfully. Investigating these cases reveals
that for 106 sites we were unable to connect to the main site via
HTTP due to the connection being preemptively terminated (e.g.,
connection resets, unresolvable hostnames) or the site needing
more than 30 seconds to load which triggers a timeout in our in-
frastructure in order to prevent infinite loading sites. Randomly
sampling 5% of the other 366 reveals that on 9 sites our crawlers
were blocked visiting the site and were instead served a static site
indicating the block, with 1 location and 3 IP-based blocks. Further
6 sites only served static content (CDN main sites, domain selling
sites) and 3 sites would have required to circumvent interstitial
JavaScript dialogs(e.g., GDPR interstitials). Of these remaining 4528
sites with more than one successfully visited page, only 65 do not
include any third-party script on their Web presence. Thus, for our
further analyses in the rest of this section, we focus only on these
4463 sites which could theoretically benefit from ScriptProtect.

4.2.2 Sink usage. By artificially injecting the protection via our
instrumented browser and visiting these sites (and all their sub-
pages in the set of the initial 3.5 Million pages), we observe that

Table 3: Number of sites for which a third-party used a sink
in order to add new code. See Table 1 for a mapping of APIs
and properties to sinks.

Description # of sites

Successfully crawled 4528 (—)
With third-party scripts 4463 (100%)
Third-party adds code via URI sinks 4180 (94%)
Third-party adds code via HTML sinks 3122 (70%)
Third-party adds code via JS sinks3 1562 (35%)

on the vast majority of sites, a third party dynamically adds new
code at least once. This is due to the fact that constructing and
assigning script URLs at runtime is extremely popular (e.g., in ad-
vertisements) and used by third parties on about 94% of sites. On the
other hand, only 70% of these sites include a third party, which uses
APIs and properties with an HTML sink like innerHTML to insert
new JavaScript code, triggering the sanitization step to block that
new code. Furthermore, only 35% sites have a third-party which use
methods with a direct JavaScript sink like setTimeout3. Our results
on the usage of the different sinks are summarized in Table 3.

Coming back to the 129 sites from Section 2.3, which are vulner-
able due to flaws in third-party code, we investigated which sink
was actually responsible for the vulnerability in the first place. We
find that 122 of the 129 sites were exploitable due to the injection of
HTML markup, 4 due to an injection into eval, 2 sites had an injec-
tion into script.src, and on another 2 sites the attacker can hijack
the content of a script.text attribute4. This shows that the APIs
and properties with a JS or URI sink are preventing compatibility
with a significant amount of existing sites, while the real-world vul-
nerabilities are only rarely caused by them. Intuitively this makes
sense, as the direct assignment of a script.text or call to eval

makes it very obvious to the developer that new code is created.
On the other hand, for example, a call to innerHTML to adjust the
content of a div tag does not make its security implications com-
pletely obvious, again highlighting the need to make the insecurity
explicit. Therefore, to achieve backward-compatibility with existing
applications, we activate our instrumentation only for the HTML
sinks, which still mitigates most risks.

4.2.3 Mitigation Effectiveness. To verify that this backward-com-
patible version of ScriptProtect indeed provides the targeted
protection, we artificially added our scriptprotect.js to the top of
the head of all pages in the set of the 129 sites with vulnerable third-
parties. Subsequently, we checked whether the proof-of-concept
exploits discovered by the taint engine were blocked by our pro-
tection mechanism. Due to the design choice to exclude them, the
8 sites with non-HTML sinks could not be protected. However,
another 13 also continued to be vulnerable, as their third-party
scripts were vulnerable to an HTML injection, but then proceeded to
insert our payload without using one of the protected HTML sinks.
Manual investigation of these 13 sites showed that this is due to the

3This excludes the usage of eval, as it cannot be safely wrapped without poten-
tionally breaking other functionality. We discuss this further in Section 5.1

4One site had both an injection into an HTML context and into eval, resulting in
130 sinks on 129 sites

fact that, when using certain libraries, the line between the different
sinks begins to blur. For example, jQuery’s .html function is a more
convenient version of innerHTML, that internally uses script.text
(or eval in older versions) to execute inline scripts, which is not
possible using the standard innerHTML function. As jQuery is widely
used we extended ScriptProtect to also wrap and protect all of
jQuery’s HTML sinks. Adjusting our protection to correctly func-
tion with all other popular libraries, however, is out of scope for this
work, but would be straightforward on a case-by-case basis. After
adding the additional protection of jQuery another 6 sites were
protected, leaving only 15 sites vulnerable despite ScriptProtect’s
presence.

Overall, this backward-compatible version of ScriptProtect
prevents the exploitation of the discovered third-party vulnera-
bilities on 114 of the 129 sites. While a more complete protection
certainly would be desirable, a tradeoff between security and com-
patibility needs to be made. With our approach of only instrument-
ing the HTML sinks, ScriptProtect can be used on 1341 (30%) of
the 4463 sites with third-party code without any code changes while
still preventing almost 90% of all third-party caused vulnerabilities.

To understand if other approaches could mitigate the risk of an
exploitable flaw in a similar fashion, we also checked if the sites
in question could deploy a strict Content Security Policy (CSP). In
doing so, we found that all sites with a vulnerable third-party script
also made use of inline scripts or event handlers. Therefore, these
sites could not easily deploy a secure policy without modifications;
at the very least, securing inline scripts would require to use nonces.
For event handlers, though, while there is a discussion about al-
lowing these via unsafe-hashed-attributes5, there is currently no
solution other than using the unsafe-inline keyword. This would
entirely undermine CSP’s protection capabilities. Hence, the only
way to use CSP would be to rewrite large parts of the application
[38]. We see this as a further evidence that ScriptProtect indeed
fills the much needed gap of an easy-to-deploy mechanism that
helps to prevent Client-Side XSS attacks.

5 DISCUSSION
In the following, we describe the limitations of both our approach
and the conducted evaluation and discuss the resulting impact on
our results. We also shortly introduce other security-relevant areas
that would likely benefit from a ScriptProtect-like solution in the
future. We conclude this section by comparing our approach to the
Trusted Types proposal, which also intends to get rid of Client-Side
XSS problems.

5.1 Limitations
Our approach comes along with a few limitations, which we outline
in the following.

5.1.1 Wrapping of eval. Wrapping all JavaScript sinks suffers from
a drawback: instrumenting the eval statement is problematic, as it
is a language construct rather than a simple function in JavaScript.
This results in potential scoping-related side effects caused by the
instrumentation. We consider the example code in Figure 11. In an
unmodified environment, the JavaScript engine will execute the

5https://www.chromestatus.com/feature/5867082285580288

https://www.chromestatus.com/feature/5867082285580288

1 function x() {
2 // Function scope
3 var a = 2;
4 eval("a += 1");
5 // Some more code ...
6 }

Figure 11: Example to highlight issues with eval and the in-
voking function’s local scope

eval statement in line 4 in the local scope of the function x. This
means that starting from line 5, the local variable a’s value will be
3. If, however, we now overwrite eval to be a function we define
ourselves, this function does not contain a local variable a in its
scope. Hence, evaluating the statement in line 4 will result in a
ReferenceError: a is not defined. This does not affect the backward-
compatibility of ScriptProtect, as the JavaScript sinks are not
instrumented for existing applications (see Section 4.2). For the
unsafe API variants, the first party needs to forgo using eval at
all, so that in can safely be disabled for the third parties, without
breaking first-party code.

5.1.2 Discovery of Incompatibilities. Naturally, a limitation of our
approach to determine the compatibility of ScriptProtect with
existing sites, is the coverage we achieved during our crawl. Re-
garding page coverage, we are both limited in terms of which pages
we can discover and how many we can visit. Specifically, we could
only visit those URLs which were linked to from another page we
visited and our crawler does not have the capability to login to any
of the applications (if such a login exists). Furthermore, we limited
the crawl to a depth of 2 and a maximum of 1000 pages per Web
application, to finish in a reasonable time frame. Regarding code
coverage, the crawler does not interact with the page beyond the
initial load request. Therefore, we cannot determine if a dangerous
API or property would be invoked after some interaction by the
user. As a result, the compatibility of ScriptProtect is likely lower
than reported.

5.1.3 Attribution of Parties. Both the inspection of stack traces
and our compatibility evaluation uses the hostname to detect third-
party scripts. This notion, however, does not necessarily match the
facts on the Web, where major players like Google have specific
domains for each type of service. An example of this is the combina-
tion of Google’s DoubleClick advertisement service and the domain
googlesyndication.com. The syndication domain is merely used to
host scripting and ad resources, yet belongs to the same party. Simi-
larly, Google also owns gstatic.com, which is used to store content
that is supposed to be static. Hence, when a script from google.com

includes additional script resources from gstatic.com, these look
like third-party scripts from the hostname, but in fact are from
the same entity. As a result, the compatibility of ScriptProtect is
likely higher than reported, as manual exceptions could be added
to the script.

5.1.4 Completeness of Stack Traces. Unlike the stack traces in an
external debugger like Chrome’s DevTools, the traces obtained
through Error().stack from within the JavaScript environment are
somewhat limited. For example, the newly introduced keyword

await will suspend execution until another asynchronous task has
finished. However, when the execution is then resumed from the
microtask queue (basically an event loop), we can no longer access
the stack trace of calls that happened before the await. Additionally,
we have no way of knowing that the stack trace was truncated at
this point. Therefore, if the first-party code calls directly into third-
party code and then the trace is truncated, we might unwarrantedly
block a call to a dangerous API. While the other way round is also
possible, we assume that direct calls from generic third-party code
into application-specific first-party code are less likely. However,
browser vendors are aware of this problem and are working on
possible improvements. As time of writing, the so-called “zero-cost
async stack traces” are already available in the alpha version of
Chrome 72, albeit still hidden behind a flag [19]. As a result, the
compatibility of ScriptProtect is likely higher than reported, as
soon as more accurate traces become available.

Note that the last three limitations only affect the backward-
compatible version of ScriptProtect, as the introduction of unsafe
API variants does not rely on the stack trace.

5.2 Future Work
In addition to ScriptProtect’s focus on APIs and DOM properties
that enable Client-Side XSS problems, other classes of JavaScript
APIs could also be considered.

5.2.1 Cross-domain Communication. The postMessage API allows
to communicate within the Web browser and across the origin
boundaries set by the Same-Origin Policy. Unsafe usage of this
API could lead to the leakage of confidential information. Thus, to
prevent third-party scripts from accidentally leaking information
to untrusted sites, the proposed mechanism can be used to restrict
the API usage to trusted first-party code.

5.2.2 Client-Side Persistence. Several browser APIs including local-
Storage and IndexedDB allow the persistent storage of information
in the browser. Depending on the first-party functionality, this stor-
age might contain sensitive data. Also, allowing third-parties to
store information into the first-party’s origin bound storage might
lead to pollution of the application’s data and might lead to sec-
ond order injection vulnerabilities as recently shown [29]. Hence,
depending on the first-party usage of these persistence methods,
restricting third-party scripts in this respect would increase the
application’s security robustness.

5.2.3 Audio and Video Communication. With modern APIs, such
as MediaDevices.getUserMedia, the browser has access to the user’s
camera and microphone. Permission to access these devices is ob-
tained in the context of the web origin of the hosting site, i.e., under
the context of the first-party application provider, but all third-party
scripts are executed in the context of the first-party web origin. This
means, if the user trusts the first-party to access his A/V devices,
the third-party code is implicitly granted access as well. Thus, using
ScriptProtect’s technique, third-party scripts can be denied ac-
cess to the A/V resources, without disrupting legitimate first-party
functionality.

5.3 Comparison to Trusted Types
Trusted Types [9] is a recent proposal promising to eradicate Client-
Side XSS by making unsafe DOM interaction explicit. In its current
form, it requires that any string which is passed to DOM manipu-
lating APIs needs to correspond to a "safe" type (e.g., TrustedHTML
for innerHTML); otherwise, an exception is raised. Generating such
a safe type requires interaction with a Policy object, which ideally
takes care of a context-aware sanitization. An example of policy
generation and subsequent sink access can be found in Figure 12.
To the best of our knowledge the currently available specification
for Trusted Types has yet to be finalized, thus could still undergo
API level changes.

const myPolicy = TrustedTypes.createPolicy(name, {
createHTML: (s) => { return sanitizeHTML(s) }

})
let unsafeString = /*potentially unsafe string*/;
let safeString = myPolicy.createHTML(unsafeString);

document.body.innerHTML = unsafeString; // leads to an exception
document.body.innerHTML = safeString;

Figure 12: Example of using Trusted Types with the inner-
HTML sink

While Trusted Types are undoubtedly promising, they exhibit
similar shortcomings as CSP. The complete codebase of the Web ap-
plication would need to be rewritten to conform with the changed
API of DOM access, which includes code originating from third-
parties. However contrary to CSP, which allows developers to add
hosts required by the third party to the policy, Trusted Types man-
dates changes in the codebase of the third party, over which the
first-party developer has no control. Especially, the lack of deploy-
ment of CSP [30] and the insecurity of most policies [5, 38] paints
a grim picture for the at least equally challenging to deploy mech-
anism of Trusted Types. Therefore, we designed ScriptProtect
in the most backward-compatible way possible, while providing
strong protection against the most common attack vectors. Script-
Protect lifts the burden from the developer to design and enforce
appropriate policies while still being reasonably compatible with
modern Web applications.

If we compare the core concepts of Trusted Types and Script-
Protect, the former introduces a capability-based access control
mechanism while the latter rather resembles a reference monitor.
The capability in the case of Trusted Types is the Policy object.
Access to this object allows the generation of the safe types, this
capability cannot be reasonably contained in our setting of benign-
but-buggy third parties, if the developer wants to, e.g. allow one
party to interact with a lax policy whereas he only provides a strict
policy to other parties. The approach of ScriptProtect, while not
part of our core proposal, allows resolving exactly this scenario by,
e.g., introducing an additional ACL mechanism into the decision
routine of the instrumented API.

Nonetheless, both concepts try to reach the same goal of ban-
ishing Client-Side XSS from modern Web applications and can
potentially benefit from each other. Trusted Types could incorpo-
rate the Dynamic Access Control of ScriptProtect to mitigate the

problems of the new capability system. At the same time, Script-
Protect’s general setup of API instrumentation allows for a rather
simple introduction of Trusted Types into existing applications.
Furthermore, we hope that our empirical results provide insights
into the threat landscape of Client-Side XSS in real Web applica-
tions, which could steer the future development of Trusted Types.
In particular to find an appropriate trade-off between security and
usability while not repeating previous mistakes.

6 RELATEDWORK
In the following, we discuss how ourwork relates to previous papers
in the area of Client-Side Cross-Site Scripting as well as defenses
against different types of Cross-Site Scripting and previous work
on the secure inclusion of untrusted code.

6.1 Client-Side XSS
The notion of Cross-Site Scripting caused by client-side code was
first identified by Klein [14]. In 2013, Son and Shmatikov [28] inves-
tigated the insecure usage of postMessages and found that in many
cases, flows from postMessages to sinks like eval lead to exploitable
Client-Side XSS flaws. Later that year, Lekies et al. [17] developed
an automated system to find such flaws at scale, showing that 9.6%
of the Top 10,000 sites had at least one vulnerability. Based on their
methodology, the same group analyzed the nature of Client-Side
XSS flaws [32] based on a set of 1,273 real-world vulnerabilities,
showing that 273 were solely caused by vulnerable third-party code.
The general problem of outdated and vulnerable libraries was high-
lighted in 2017 by Lauinger et al. [15], showing that up to 37% of
the Top 75,000 sites used at least one outdated library. This pattern
was also observed by Stock et al. [30], who analyzed the evolution
of client-side security over a course of 20 years using the Internet
Archive. Moreover, the authors also showed the trend of Client-Side
Cross-Site Scripting flaws, finding that since 2004, more than 8% of
the 500 most important sites contained at least one such flaw. More
broadly, Saxena et al. [26] proposed FLAX to systematically find
client-side validation flaws, e.g., unfiltered flows to a cookie, which
could enable an attacker to conduct a session fixation attack.

6.2 XSS Defenses and Mitigation
Given that XSS has been around for almost 20 years, a number of
researchers have proposed defenses and mitigations against these
attacks. Early research focused on deploying such tools on the
server, such as Vogt et al. [36] or Bisht and Venkatakrishnan [4].
Later, Ter Louw and Venkatakrishnan [34] proposed BluePrint, a
tool enabling Web sites to provide a specification of the expected
DOM structure; this way, any anomalous script content could be
easily identified and removed. This approach, however, requires
changes to the browser itself, which our approach does not.

In 2010, Bates et al. [3] analyzed the security of existing browser-
based XSS detection. In doing so, they found a number of flaws in
Internet Explorer’s filter, which would even allow for XSS in error-
freeWeb sites. Based on their insights, they proposed a new concept
for an XSS filter, dubbed XSSAuditor. This filter is nowadays
deployed in all Webkit-based browsers, such as Google’s Chrome.
However, as Stock et al. [31] showed in their work, design choices
in the XSSAuditor make it susceptible to bypasses: in 2014, 73%

of the sites with vulnerabilities carried at least one flaw for which
the Auditor could be bypassed. Pelizzi and Sekar [24] proposed
an improvement variant with more aggressive filtering, naturally
accompanied by an increased chance of false positives. Hence, the
improved changes were not applied to the original Auditor.

In the area of defenses against Cross-Site Scripting, Stock et al.
[31] proposed to use taint tracking to stop code injections. They
extended their taint engine to forward taint into the JavaScript
parser and enforcing policies to ensure that user-provided data
could only be interpreted as literals and not lead to code execution.
While their approach protects against all types of Client-Side Cross-
Site Scripting, it requires immense changes to the code base of the
browser and causes an overhead between 7% and 17%. Consequently,
this has not been implemented into browsers as of now.

6.3 Securing Third-party Code
Over the years there have been many attempts to allow the in-
clusion of third-party code without compromising the security of
the including site itself. In 2007, Jim et al. [13] proposed BEEP, a
browser-enforced embedded policy that controls which scripts are
allowed to run. Similar to today’s CSP, it allows whitelisting of
specific scripts by including their SHA1 hash in the policy. For
a more fine-grained approach, Meyerovich and Livshits [20] de-
signed Conscript, which allows for specific security policies that
are added to each script tag. Possible policies could, for example,
forbid the use of dynamic scripts or calls to specific functions like
postMessage. In a similar fashion, Van Acker et al. [35] created
WebJail in 2011. While certainly powerful, these approaches re-
quire drastic modifications of the browser to enforce the policy and,
without adoption by popular vendors, have not found widespread
use. Finally, Snyder et al. [27] built a browsing extension that works
in a similar fashion to our hooking approach. In particular, this
enables a user to selectively disable DOM features which are not
needed by a site. In contrast, however, in our work we do not require
a user with an extension or a study what a given site requires to
function correctly. More importantly, though, our approach allows
the continued usage of all DOM APIs, yet securing access to them.

In a different kind of approach, Miller et al. [21] created a subset
of JavaScript called Caja, an object-capability language which iso-
lates objects from the outside world. However, this means that all
untrusted code must be written in Caja. Following the same con-
cept, Agten et al. [2] proposed JSand in 2012, a system that isolates
third-party scripts from each other and the DOM through the use
of an object-capability model. In the same year, Ingram and Wal-
fish [12] presented Treehouse, a JavaScript sandbox based on web
workers. While these and similar approaches can be implemented
without modifications to the browser, they require changes to the
untrusted code. Hence, adoption of this type of defense is inhibited
by the lack of support from the third-parties like advertisement
networks.

Finally, there are defensive mechanisms which are implemented
as transparent wrappers, so that neither the browser nor existing
code needs to be modified. In 2009, Phung et al. [25] published their
work on self-protecting JavaScript, in which they intercept security
relevant events by monitoring the methods and fields of built-in
objects. One year later, Ter Louw et al. [33] proposed AdJail, an

isolation framework specifically designed for advertisements. The
isolation is achieved by running the code in a so-called shadow
page and by providing a controlled interface for interaction with
the real page. Yet, all these papers assume a malicious third-party
in their attacker model and hence require very strict isolation of
the third-party code. This, in turn, tends to break many use cases
like analytics and enrichment of pages in general. In contrast, our
concept is much more lightweight and simpler to integrate. In
particular, there is no need to tamperproof our hooked functions,
as we block all untrusted code before it is executed.

Still, there also has been some work on securing benign-but-
buggy third parties, confirming the relevance of our threat model:
In 2015, Weissbacher et al. [39] presented their system ZigZag,
which transparently instruments JavaScript code to perform anom-
aly detection during runtime. After an initial learning phase, the
generated models are used to harden the client-side code.

7 CONCLUSION
With the increased reliance on client-side code to enable a more
interactive Web, the risk of Client-Side XSS has also risen. At the
same time, Web site operators increasingly rely on third parties to
provide functionality. Notably, this means that whenever a third-
party code has a vulnerability, a site including said third-party code
becomes vulnerable. In our study of the Top 5,000 Alexa domains
we found that of the 351 sites with such a Client-Side Cross-Site
flaw, 129 sites were vulnerable to due insecure third-party code.
Additionally, in 92 of these cases, only third-party code was to fault
for the discovered vulnerability. Such vulnerability instances are
especially problematic for security-conscious Web site operators, as
they have no control over the externally included JavaScript and no
influence over the secure development lifecycle of the third-party
script provider.

Motivated by this observation, we designed ScriptProtect —
a lightweight and robust countermeasure that allows operators
to protect their Web sites against Client-Side XSS that was intro-
duced by benign-but-buggy third-party code. ScriptProtect is
an effective and easy to deploy tool that is flexible enough to be
adapted to a site’s specific functional needs and even works out of
the box with 30% of the currently existing Web code. To achieve
the backward compatibility, we leveraged code-provenance based
access control, i.e., the assignment of privileges according to the
initial origin of the code. Therefore, ScriptProtect is significantly
more permissive than earlier sandboxing approaches, while still
robust enough to reliably mitigate the attacks in focus.

Looking at the bigger picture, this paper’s empirical results once
more highlight the limitations of the Web’s current Same-Origin
Policy. The all-or-nothing, document-level approach of the policy
forces Web site operators to either fully isolate third-party services
or to hand them complete and unmitigated control over all prop-
erties of the application’s client side. While being over-permissive
with respect to the script inclusion process, the SOP is also too
restrictive with respect to handling multiple domains that are un-
der the control of the same organization. Maybe, after more than
25 years of WWW, it is time to revisit this fundamental building
block of the Web and adapt it to accommodate the security needs
of today’s applications.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-
able feedback. The authors gratefully acknowledge funding by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972 and funding from the state of Lower Saxony under the
project Mobilise. Furthermore, this work was partially supported
by the German Federal Ministry of Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and Ac-
countability (CISPA) (FKZ: 16KIS0345).

REFERENCES
[1] 2017. Percent-encode additional characters in URL’s "fragment state". . https:

//developer.microsoft.com/en-us/microsoft-edge/platform/issues/14951215/
[2] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,

and Frank Piessens. 2012. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In ACSAC.

[3] Daniel Bates, Adam Barth, and Collin Jackson. 2010. Regular expressions consid-
ered harmful in client-side XSS filters. In WWW.

[4] Prithvi Bisht and VN Venkatakrishnan. 2008. XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks. In DIMVA.

[5] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content security
problems?: Evaluating the effectiveness of content security policy in the wild. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1365–1375.

[6] cure53. 2018. DOMPurify Github Repository. https://github.com/cure53/
DOMPurify

[7] Stefano Di Paola. 2012. DominatorPro: Securing Next Generation of Web Appli-
cations. https://dominator.mindedsecurity.com/.

[8] Mozilla Foundation. 2019. Public Suffix List. https://publicsuffix.org/
[9] Web Incubator Community Group. 2017. Explainer: Trusted Types for DOM

Manipulation. https://github.com/WICG/trusted-types.
[10] Web Incubator Community Group. 2017. Support application-specific sanitizers

/ type builders. https://github.com/WICG/trusted-types/issues/32.
[11] Mario Heiderich, Christopher Späth, and Jörg Schwenk. 2017. DOMPurify: Client-

Side Protection Against XSS and Markup Injection. In ESORICS.
[12] Lon Ingram and Michael Walfish. 2012. Treehouse: Javascript Sandboxes to Help

Web Developers Help Themselves.. In USENIX ATC.
[13] Trevor Jim, Nikhil Swamy, and Michael Hicks. 2007. Defeating script injection

attacks with browser-enforced embedded policies. In WWW.
[14] Amit Klein. 2005. DOM based cross site scripting or XSS of the third kind. Web

Application Security Consortium, Articles (2005).
[15] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. In NDSS.

[16] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A Vela Nava, and
Martin Johns. 2017. Code-Reuse Attacks for the Web: Breaking Cross-Site Script-
ing Mitigations via Script Gadgets. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, 1709–1723.

[17] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In CCS.

[18] William Melicher, Anupam Das, Mashmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out DOMsday: Toward Detecting and Preventing DOM Cross-Site
Scripting. In NDSS.

[19] Benedik Meurer and Yang Guo. 2018. Zero-cost async stack traces. https:
//bit.ly/v8-zero-cost-async-stack-traces

[20] Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and
enforcing fine-grained security policies for Javascript in the browser. In Oakland.

[21] Mark S Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2008. Safe
active content in sanitized JavaScript. Google, Inc., Tech. Rep (2008).

[22] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In CCS.

[23] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu,
and Prateek Saxena. 2015. Auto-patching DOM-based XSS at scale. In Joint
Meeting on Foundations of Software Engineering.

[24] Riccardo Pelizzi and R Sekar. 2012. Protection, usability and improvements in
reflected XSS filters.. In ASIACCS.

[25] Phu H Phung, David Sands, and Andrey Chudnov. 2009. Lightweight self-
protecting JavaScript. In International Symposium on Information, Computer,
and Communications Security.

[26] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Ap-
plications.. In NDSS.

[27] Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most Websites Don’t
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Security. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 179–194.

[28] Sooel Son and Vitaly Shmatikov. 2013. The Postman Always Rings Twice: At-
tacking and Defending postMessage in HTML5 Websites. In NDSS.

[29] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild.. In NDSS.

[30] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In) Security. In
USENIX Security.

[31] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
2014. Precise Client-side Protection against DOM-based Cross-Site Scripting. In
USENIX Security.

[32] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Martin Johns.
2015. From Facepalm to Brain Bender: Exploring Client-Side Cross-Site Scripting.
In CCS.

[33] Mike Ter Louw, Karthik Thotta Ganesh, and VN Venkatakrishnan. 2010. AdJail:
Practical Enforcement of Confidentiality and Integrity Policies on Web Adver-
tisements.. In USENIX Security.

[34] Mike Ter Louw and VN Venkatakrishnan. 2009. Blueprint: Robust prevention of
cross-site scripting attacks for existing browsers. In Oakland.

[35] Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter
Joosen. 2011. WebJail: least-privilege integration of third-party components in
web mashups. In ACSAC.

[36] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. 2007. Cross Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis.. In NDSS.

[37] W3C. 2010. Same Origin Policy. https://www.w3.org/Security/wiki/Same_
Origin_Policy.

[38] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP is dead, long live CSP! On the insecurity of whitelists and the future of
Content Security Policy. In CCS.

[39] Michael Weissbacher, William K Robertson, Engin Kirda, Christopher Kruegel,
and Giovanni Vigna. 2015. ZigZag: Automatically Hardening Web Applications
Against Client-side Validation Vulnerabilities.. In USENIX Security.

https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/14951215/
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/14951215/
https://github.com/cure53/DOMPurify
https://github.com/cure53/DOMPurify
https://dominator.mindedsecurity.com/
https://publicsuffix.org/
https://github.com/WICG/trusted-types
https://github.com/WICG/trusted-types/issues/32
https://bit.ly/v8-zero-cost-async-stack-traces
https://bit.ly/v8-zero-cost-async-stack-traces
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy

	Abstract
	1 Introduction
	2 Underlying Problem
	2.1 Anatomy of a Client-Side XSS Flaw
	2.2 Third-Party JavaScript Providers
	2.3 Prevalence of Third-Party Caused Vulnerabilities

	3 ScriptProtect
	3.1 Threat Model
	3.2 Concept
	3.3 Dangerous APIs
	3.4 Instrumentation of HTML Sinks
	3.5 Instrumentation of JS and URI Sinks
	3.6 Unsafe API Variants
	3.7 Dynamic Access Control

	4 Evaluation
	4.1 Runtime Performance
	4.2 Compatibility

	5 Discussion
	5.1 Limitations
	5.2 Future Work
	5.3 Comparison to Trusted Types

	6 Related Work
	6.1 Client-Side XSS
	6.2 XSS Defenses and Mitigation
	6.3 Securing Third-party Code

	7 Conclusion
	Acknowledgments
	References

