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Abstract
Besides rendering pages in common browsers like Chrome, it is cus-
tomary for apps to rely on WebViews to display web pages. While
browsers handle permissions through user prompts for each vis-
ited site, WebViews require developers to manage web permission
requests individually, leaving significant room for error. However,
to date, the community lacks insight into the current developers’
practices of WebView’s permission enforcement.

To address this research gap, we present the first large-scale
study on the implementation ofWebView regardingweb permission
enforcement in the wild, focusing on Android apps. Particularly,
we develop an automated pipeline to detect apps that utilize Web-
View to display websites to users but lack proper web permission
enforcement, which we refer to as privacy-harmful apps (PHAs).
Our pipeline flagged 12,109 potential PHAs that compromise user-
sensitive data due to a failure to implement web permission en-
forcement. Among these potential PHAs, we further demonstrate
how malicious apps without sensitive permissions can exploit 2,219
PHAs through a confused deputy attack to load targeted malicious
websites that access sensitive data like location, camera, and mi-
crophone simply by starting these PHAs. Our results highlight a
notable privacy risk – including apps with over 500 million installa-
tions – as any website can secretly collect user data while browsing
online, and malicious apps can abuse such PHAs to collect user
sensitive data at scale.

To help developers, we notify affected developers and gather
insights from their feedback. Our findings reveal widespread and
often misunderstood issues, emphasizing the necessity of collabora-
tive efforts among stakeholders to address these privacy concerns.
Based on our insights, we further derive concrete recommendations
for developers to mitigate privacy risks associated with WebView.

CCS Concepts
• Security and privacy → Mobile platform security; Usability
in security and privacy.
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1 Introduction
Web browsers serve as the primary gateways between users and the
vast digital content of the Web, e.g., allowing users to interact with
websites, multimedia, and other online resources. To enhance user
experience, web browsers have the capacity to access devices’ sen-
sitive information, i.e., have significant privacy and security impli-
cations [64]. For example, to offer location-based recommendation
services, they require access to the device’s GPS. However, granting
web browsers access to devices’ sensitive information without any
restrictions may become a major problem for individuals’ rights
(e.g., users are secretly tracked and profiled online [25, 45, 48, 49]).
As such, to protect user privacy, web browsers widely implement
the web permission mechanism (see Section 2.1), which provides
users the ability to explicitly grant or deny websites access to the
devices’ sensitive information for each website [64].

Historically, desktop browsers have been the primary portals for
viewing web pages. However, in today’s digital era, people are not
just accessing web pages via desktops but also extensively through
smartphones, i.e., over 55% of website traffic comes from mobile
devices [21]. In mobile, the number of fully-developed browser
apps is limited due to the complexity of web browsers as software,
which demands extensive engineering to build from scratch [54].
Consequently, many browser apps (or apps that allow users to
visit websites) are built on top of WebView in Android [54] (i.e., a
component that allows developers to display web-based content
within their apps [7]).

While the Android system employs an OS permission-based
mechanism to govern access to sensitive data, it is important to
note that the permissions granted to the app should not automati-
cally extend to the content loaded within the WebView. This means
that when a user grants permissions to the host app, those per-
missions apply only to the app itself and its own functionalities,
not to the content displayed within WebView. This distinction is
important for developers to understand to ensure the security and
privacy of Android apps. In practice, Android’s WebView provides
developers with complete control and customizable configurations
for handling web permission requests, thereby leaving significant
room for error. On the contrary, web browser vendors have strictly
implemented permission mechanisms allowing users to explicitly
grant or deny access to sensitive data for each website.
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Prior research mainly focuses on Android OS permissions, in-
cluding security and privacy measurements [13, 23, 50, 56], user
perception studies [10, 11, 57, 65], concerns vulnerabilities related
to component hijacking (e.g., permission leakage, unauthorized
data access, and intent spoofing) [38, 44, 63], the impact of tim-
ing and rationales on users’ decisions [19], and the development
of new permission models [27, 37, 55, 73]. While the problem of
component hijacking and permission delegation has been well stud-
ied in the literature, the primary focus has been on the misuse or
lack of enforcement of Android OS permissions, particularly those
related to permission-protected APIs [38, 44, 50, 63]. However, de-
spite the distinction between Android OS permissions and web
permissions, and the importance of enforcing web permissions in
Android apps, there is a notable lack of understanding within the
community regarding how developers currently enforce WebView
permissions. Research concerning Android’s WebView primarily
examines vulnerabilities arising from the security risks posed by
developers explicitly exposing Java code to WebView [14, 42, 47].
Recently, Beer et al. [9] first attempted to manually study the poten-
tially vulnerable due to the lack of web permission enforcement of
two popular third-party libraries from a small set of Android apps
(i.e., 250 apps). However, manual methods alone are insufficient for
fully understanding real-world web permission implementation in
WebView and developers’ current practices.

To fill this research gap and gain an understanding of how web
permissions are currently enforced in Android’s WebView and
to see if app developers adhere to established standards for user
privacy protection [64], we conduct the first large-scale study on
the implementation of WebView regarding web permission en-
forcement in the wild, focusing on Android apps1. Particularly, we
develop a static and dynamic analysis pipeline that automatically
detects apps that use WebView to display web pages to users but
lack proper web permission enforcement, namely privacy-harmful
apps (PHAs). Applying to a set of 276,760 Android apps in Google
Play, we identify 54,605 apps that instantiate WebView and enable
JavaScript execution within their WebView settings. By searching
for bytecode-level signatures of misconfigured implementations
in web permission enforcement within WebView, our pipeline de-
tects 12,109 potential PHAs (out of 54,605 apps) that compromise
user-sensitive data due to a failure to implement web permission
enforcement. Such a vulnerability poses severe privacy threats,
allowing websites to silently harvest user data during browsing ses-
sions and enabling malicious actors to exploit these potential PHAs
to silently aggregate data on a large scale. For example, PHAs may
have more permissions than malicious apps, allowing the malicious
apps to exploit this by conducting a confused deputy attack and
load targeted sites that collect user sensitive data.

Further, we to demonstrate how malicious entities can exploit
those PHAs by simply launching those potential PHAs, i.e., without
performing a comprehensive context analysis to execute the app.
Particularly, our dynamic testing pipeline identifies 2,219 PHAs
that enable any website to access devices’ location, camera, and

1We focus on Android apps since iOS WebViews enforce more stringent web permis-
sions by default. In iOS, websites must directly request user permission through the
native iOS system without overburdening developers.

microphone without informing users. Notably, improper enforce-
ment of web permissions in Androids’ WebView is a privacy is-
sue that affects not only non-browser apps but also highly popu-
lar browser apps with hundreds of millions of installations (e.g.,
Phoenix Browser), posing a significant risk to user privacy. Our
findings reveal evidence of open permission access with potential
impacts on billions of users. To support developers in fixing these
privacy problems, we perform a notification campaign, reaching
out to the developers involved with emails to inform them. Our
research findings indicate that this issue is not only prevalent and
widespread but also frequently misinterpreted, highlighting the
need for a collective effort from all stakeholders to mitigate these
privacy risks effectively. In summary, our paper makes the follow-
ing contributions:

• We perform the first large-scale study on the implementation
of web permission enforcement in Androids’ WebView.

• We develop a pipeline (including dynamic and static analysis)
that automatically analyzes Android apps to identify PHAs.
Our pipeline demonstrates how straightforward it is to abuse
these PHAs to collect users’ sensitive data on a large scale.

• We notify affected developers, gather insights, and provide
recommendations to all stakeholders, urgently addressing
these problems.

Organization. The paper is structured as follows. Section 2
describes the background of web permission standards, web per-
mission enforcement in Androids’ WebView, our privacy threat
models, and the related work. Section 3 presents our approach to
identifying the lack of web permission enforcement in Android
apps. Section 4 presents our large-scale analysis of Android apps
and demonstrates our approaches to detecting PHAs and poten-
tial PHAs. Section 5 describes our email notifications and presents
the feedback from developers. Section 6 discusses our findings.
Section 7 draws conclusions.

2 Background and Threat Models
This section describes the background of web permissions, Android
OS permissions, and web permissions in Androids’ WebView. We
also delve into privacy threat models, app developers’ responsibili-
ties, legal implications, and related work.

2.1 Web Permissions
Based on the web standards [64], accessing browsers’ sensitive
information, e.g., GPS data, requires explicit granting from users.
Users’ consent to allow a website to access a sensitive data is gen-
erally given and controlled through the browser UI. Accordingly,
most browsers (both on desktop and mobile) strictly implement
these requirements. Generally, websites can use privacy-sensitive
JavaScript APIs to access browsers’ sensitive information, i.e., Ta-
ble 1 presents a list of privacy-sensitive JavaScript APIs. For ex-
ample, Listing 1 shows the JavaScript code for using Geolocation
API to collect the current position of users. Particularly, when the
navigator.geolocation.getCurrentPosition is called (at line 2), if the
location permission has not been granted, the browsers will prompt
to ask for user decisions (either allow or deny access). Then, if the
users allow access, the web page can access the users’ GPS data
(lines 3 and 4). Depending on each browser app, the permission
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Name API

Background Synchronization API background-sync
Clipboard API clipboard-read, clipboard-write
Geolocation API geolocation
Local Font Access API
Media Capture and Streams API microphone, camera
Notifications API notifications
Payment Handler API payment-handler
Push API push

Sensor APIs
accelerometer, gyroscope,
magnetometer,
ambient-light-sensor

Storage Access API storage-access
Storage API persistent-storage
Web Audio Output Devices API speaker-selection
Web MIDI API midi

Table 1: List of privacy-sensitive JavaScript APIs [18].

1 function getCurrentLocation() {

2 navigator.geolocation.getCurrentPosition((pos) => {

3 console.log(pos.coords.latitude);

4 console.log(pos.coords.longitude);

5 });

6 }

Listing 1: Getting the devices’ GPS data via Geolocation API.

1 public class WebClient extends WebChromeClient

2 {

3 @Override

4 public void onGeolocationPermissionsShowPrompt(String origin,

GeolocationPermissions.Callback callback) {↩→
5 callback.invoke(origin, true, false);

6 }

7
8 @Override

9 public void onPermissionRequest(PermissionRequest request) {

10 request.grant(request.getResources());

11 }

12 }

Listing 2: Granting permissions to Androids’ WebView.

request prompt can be shown differently. For example, for a partic-
ular website, a prompt is shown every visit or the user’s decisions
will be persisted for the next visit.

2.2 Web Permissions in Android Apps
Mobile platforms like Android use an OS permission system

to control app access to devices’ hardware and other sensitive re-
sources [28], such as GPS data. For Android prior to 6.0, users
have to accept or reject all permissions an app requests at installa-
tion, without the option to grant permissions individually, leading
to over-privileged apps with access to more sensitive data than
necessary [22, 30, 33, 50]. Starting with Android 6.0, the runtime
permission model was introduced, improving user security and
privacy protections [10]. It aims to connect permission requests to
specific functionalities at runtime, and developers can clarify the
need for access by providing additional explanations.

However, in Android apps using WebView for displaying web-
sites, users granting permissions (Android OS permissions) to the

host app does not by default mean they acknowledge every loaded
website within the WebView having access to their sensitive data.
More importantly, it is impossible for users to know when and
where certain data access takes place unless the app developers
explicitly clarify it. For example, to access the device’s GPS data, an
appmust first request permission from the Android OS (e.g., it is rea-
sonable for users to grant location permission since it is a weather
forecast app, not an alarm app). Once this permission is granted,
the app can then share the location data with any website within a
WebView without additional permission requests. This highlights a
key difference in the timing and responsibility of the permission
prompt — the Android OS manages the initial permission, but once
granted, the app has the privilege to use this permission in its in-
teractions with websites in WebView without further oversight
from the OS or users. Therefore, developers have to ensure that
users’ sensitive data are not made accessible to any websites with-
out the users’ intervention or consent by default. It is different from
traditional browser apps, which strictly adhere to web standards
regarding web permissions. In particular, traditional browser apps
manage web permissions and privileges granted to each website
or web application. Users can grant or deny these permissions, of-
ten through prompts or dialog boxes that appear when a website
requests access to specific resources or functionality.

While browsers like Chrome or Firefox by default prompt for
user consent for each website requesting sensitive data, Android’s
WebView grants developers full control over web permission han-
dling. In particular, app developers have to write custom code to
manage web permission requests. Generally, when the host app
receives a permission request from a web page (see Listing 1), it
is up to the app first to request those permissions from the device
(Android OS permissions), which can be done using requestPermis-
sions of the Android framework [6]. Afterward, it is up to the app
to present the UI, which asks for the user to grant the web page the
ability to access a sensitive data, e.g., GPS location.

In Android’s WebView, the WebChromeClient class manages
permission requests from web pages (see Listing 2). The WebView
will notify the host app that web content from the specified origin
is attempting to use the sensitive information (see Listing 1), but no
permission state is currently set for that origin (consists of the host,
scheme, and port of a URI). The host app will invoke the specified
callback with the desired permission state. Specifically, if the web
content from a specified origin is attempting to use the Geolocation
API, but no permission state is currently set for that origin, the
onGeolocationPermissionsShowPrompt() callback will be invoked
(from lines 3 to 6 in Listing 2). For other privacy-sensitive JavaScript
APIs (such as Camera, Microphone), the onPermissionRequest() will
be invoked (from lines 8 to 11 in Listing 2). The host app must
then invoke PermissionRequest#grant() or PermissionRequest#deny()
methods in order to deny or grant access. If these two methods are
not overridden, all web permission requests are denied by default.

2.3 Privacy Threat Models
Androids’ WebView is desired to display trusted first-party web
pages [7]. Google suggests using Chrome for web page display,
but many app developers still prefer WebView for a seamless user
experience, allowing web page embedding within apps without
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Figure 1: Two privacy threat models regarding the lack of
web permission enforcement in Android’s WebView.

the need to navigate away. Further, many Android browsers have
been built on top of WebView [54]. Doing so raises many security
and privacy problems, especially when visiting third-party web
pages [14, 31, 42, 47, 71, 72].

While many studies have examined security concerns in An-
droid’s WebView, the research community lacks insight into the
real-world behavior of web permission implementation within An-
droid’s WebView. In this work, we identify apps as privacy harm-
ful (dubbed Privacy-Harmful Apps or PHAs for short) if they use
WebView without implementing web permission enforcement (see
Section 2.1). This poses a significant privacy risk, as users’ sensi-
tive information can be covertly collected when using such PHAs.
Besides, malicious apps can exploit these PHAs to gather user data
without their knowledge. In practice, users may grant permission
(Android OS permission) to host apps without realizing that every
website they visit gains access to their sensitive data.

In the following, we present our privacy threat models of An-
droids’ WebView regarding web permissions.

2.3.1 Web Browser and In-App Browser Apps. Browser apps are
purpose-built for Internet browsing, such as accessing and explor-
ing websites. While launching an external browser app is a heavy
context switch for users, many apps also allow users to visit web-
sites within the apps (which allows users to remain within the app
while browsing online). In practice, most of these browser and in-
app browser apps are built on top of Androids’ WebView because
the browser engine is complex and requires significant engineer-
ing effort to develop from scratch. However, app developers do
not correctly implement the privacy protections regarding web
permissions. For example, in Listing 2, access to Geolocation and
other sensitive resources is granted without any prompts to inform
users. As such, when users are using these PHAs to browse the web-
sites, all their personal data is at risk. Specifically, all the websites
that they have visited can collect users’ information without their
awareness (case 1 in Figure 1). This creates a privacy threat since

the attackers can easily trick the victim into opening malicious
websites [42].

2.3.2 Web Browsable Apps. The apps are not purpose-built for
Internet browsing nor provide in-app browsing functionality. How-
ever, as a part of these apps, they need to load websites using
Android’s WebView. However, the app developers unintentionally
expose the apps’ functionality to other apps (or do not prevent
the loading of third-party websites), which leads to the app being
tricked into performing an undesirable action. For example, in case
2 in Figure 1, the malicious apps without sensitive permissions can
invoke these PHAs to visit the malicious websites (which collect
users’ sensitive data) via an Intent, i.e., communication between
different apps. We note that attackers can also apply the Intent
communication to the browser and in-app browser apps since they
are purpose-built for Internet browsing.

2.4 Legal Implications
It is known that app developers are nowadays in a disadvantaged po-
sition, where third parties make it cumbersome for them to comply
with data protection regulations around the globe, e.g., the General
Data Protection Regulation (GDPR) in the European Union and the
European Economic Area, the California Consumer Privacy Act
(CCPA) applies to California residents in the US [48, 49]. However,
as first-party data controllers (i.e., decide why and how personal
data is processed), developers are legally responsible for ensuring
that the users’ data is protected.

For example, GDPR Art. 25 states: “The controller shall implement
appropriate technical and organizational measures for ensuring that,
by default, only personal data which are necessary for each specific
purpose of the processing are processed. That obligation applies to
the amount of personal data collected, the extent of their processing,
the period of their storage, and their accessibility. In particular, such
measures shall ensure that by default personal data are not made
accessible without the individual’s intervention to an indefinite num-
ber of natural persons.”

As such, developers have to implement appropriate technical
measures to protect the rights of data subjects and be transparent
about how data is collected and used.

2.5 Related Work
Researchers have conducted many studies on the privacy and secu-
rity of browser apps. Leith et al. [35] compared privacy features in
major browsers, Luo et al. [40, 41] uncovered UI vulnerabilities in
mobile browsers and evaluated for security features. Lin et al. [36]
identified privacy threats in autofill features, while Wu et al. [67]
discovered vulnerabilities compromising user data. Kondracki et al.
[34] analyzed security trade-offs in data-saving features. Nomoto et
al. recently proposed a framework for analyzingweb browser behav-
ior, focusing on web permission implementations of major browsers
on different platforms and highlighting that the inconsistencies can
lead to user tracking and unknowingly granting permissions to ma-
licious sites [51]. Luo et al. [39] conduct the first large-scale study of
certificate validation in mobile browsers, revealing inconsistencies
that may expose users to man-in-the-middle and spoofing attacks.
Debnath et al. [16] shows many proxy-based mobile browsers (i.e.,
use proxies for traffic compression and censorship circumvention)
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Figure 2: Overview of our methodology to identify privacy-harmful apps (PHAs).

downgrade the quality of TLS sessions, exposing users to poten-
tial security and privacy threats. On the other hand, Pradeep et al.
conducted an extensive analysis of Android web browsers’ data
protection, showing both protective and harmful privacy behaviors
across different browsers [54].

While many mobile apps design in-app browsing interfaces for a
seamless user experience, reducing the need to switch between the
app and standard browser apps, Zhang et al. [74] show that poorly
designed or customized in-app browsing can introduce usability
and security risks. However, despite the importance of permission
mechanisms in protecting user privacy, the community primarily
focuses on the standard browser apps and lacks insight into An-
droids’ WebView permission behavior, while Androids’ WebView
component is widely used to display websites within mobile apps.

Regarding Androids’ WebView, many studies have identified
possible attacks on WebView [14, 31, 42, 47, 71, 72]. Chin et al.
[14] introduced a tool to detect security flaws in apps employing
WebView, suggesting enhanced security policies. Luo et al. [42]
discussed the security implications of WebView usage in mobile
apps, highlighting how its features could weaken web security
infrastructure. Mutchler et al. [46] evaluated the prevalence of
vulnerabilities in mobile web apps, emphasizing the need for API
improvements. Neugschwandtner et al. [47] presented case studies
on security threats associated with WebView, collectively contribut-
ing to our understanding of the security and privacy challenges in
this domain. Such attack models outlined in prior work primarily
originate from app developers explicitly exposing sensitive APIs
through interfaces registered to WebView. This allows JavaScript
code in embedded web pages to invoke these interfaces to access
sensitive data. Alternatively, attacks may occur due to network
compromise by an attacker or the compromise of a server used to
deploy malicious JavaScript. Orthogonal to these attack models,
our threat models originate from the lack of implementation of web
permission enforcement by app developers, rather than intention-
ally exposing sensitive data to WebView. Further, our study focuses
on understanding the current practices of Android’s WebView per-
mission enforcement among developers in the wild and examining
its vulnerabilities that risk users’ privacy.

3 Methodology
To gain an understanding of how web permissions are currently
enforced in WebView and to see if app developers adhere to estab-
lished standards for user privacy protection, we perform the first
large-scale study on the implementation of WebView concerning
permission enforcement in real-world scenarios. Specifically, we
propose an automated and scalable pipeline to identify misconfigu-
ration of WebView regarding the web permission enforcement in

Android apps, i.e., the lack of permission enforcement when web-
pages invoke privacy-sensitive JavaScript APIs to access sensitive
data (see Figure 2). In particular, we first perform static analysis to
detect potential PHAs. We referred to these apps as potential PHAs
because their behaviors had not been confirmed through dynamic
testing, which might result in over-approximation. Specifically, our
approach begins by employing static analysis to identify apps uti-
lizing WebView, followed by the static analysis of instances where
web permission enforcement is lacking. From those identified po-
tential PHAs, we then conduct a dynamic testing that automatically
invokes the apps’ functionality to open our test pages containing
JavaScript code to access sensitive data through privacy-sensitive
JavaScript APIs (see Section 2.1). The underlying assumption is that
we do not interact with the app’s potential permission dialogues
regarding websites’ permission requests (if there are any), implying
that if our test pages can gain access to users’ sensitive data, the
access is not properly safeguarded by prompts, other protection
mechanisms implemented by the app developers, or there are no
enforcements at all. Our dynamic analysis aims to demonstrate
how easily these PHAs can be invoked to open targeted malicious
websites and collect users’ sensitive information on a large scale,
without requiring a complex execution context.

Based on the collected results from our test pages, we can identify
the lack of web permission enforcement (or improper protection)
of the Androids’ WebView that leads to user-sensitive data being
exposed to any websites. Specifically, we consider it improper pro-
tection if our test pages can be successfully loaded and can collect
sensitive data without interactions with the app user interface. This
work focuses on Location, Camera, and Microphone because An-
droids’ WebView mandates explicit implementation by the host
apps (i.e., developers have to explicitly write code to grant these
permissions to WebView). Data that is either granted by default or
not supported by Android’s WebView is excluded from our analysis,
e.g., sensor information. More importantly, data related to Location,
Camera, and Microphone permissions are considered personal data
under GDPR, which strictly regulates how to collect, process, and
protect these data. For example, to be legally compliant, an online
service is required to obtain users’ explicit consent before collecting
personal data if such a service uses the data for its own purposes.

We note that Android recently tried to improve privacy protec-
tions by displaying indicators when an app uses a camera and a
microphone, i.e., employed in Android 12 (released in 2021), which
displays an icon in the status bar when the camera or microphone
is being used [29]. However, the indicator does not prevent the
attack from happening, and users may not even notice it. Even if
they do, it will already be too late since the malicious websites will
have already taken photos.
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1 [Method: onPermissionRequest]

2
3 r0 := @this: ([A-Za-z0-9]+(\.[A-Za-z0-9]+)+)\$[A-Za-z0-9]+;

4 $r1 := @parameter0: android.webkit.PermissionRequest;

5 $r2 = virtualinvoke $r1.<android.webkit.PermissionRequest:

java.lang.String[] getResources()>();↩→
6 virtualinvoke $r1.<android.webkit.PermissionRequest: void

grant(java.lang.String[])>($r2)↩→
7 return;

Listing 3: A bytecode-level signature of onPermissionRequest
that grants all requested sensitive permissions to WebView.

1 [Method: onGeolocationPermissionsShowPrompt]

2
3 r0 := @this: ([A-Za-z0-9]+(\.[A-Za-z0-9]+)+)\$[A-Za-z0-9]+;

4 $r1 := @parameter0: java.lang.String;

5 $r2 := @parameter1: android.webkit.GeolocationPermissions$Callback

6 interfaceinvoke $r2.<android.webkit.GeolocationPermissions$Callback: void

invoke(java.lang.String,boolean,boolean)>($r1, 1, 0);↩→
7 return;

Listing 4: A bytecode-level signature of onGeolocationPermis-
sionsShowPrompt that grants location permission to Web-
View.

3.1 Identify Potential PHAs by Static Analysis
In the following sections, we provide a detailed explanation of our
methodology for detecting potential PHAs by using static analysis.

3.1.1 Apps Embed Androids’ WebView. To identify apps that embed
WebView, we conduct static analysis using the following criteria:

• We decompile the app to analyze its resources and select
apps that have declared WebView in their layout files, i.e.,
located in “res/layout” directory.

• We then statically analyze the app code to identify the ini-
tialization of android.webkit.WebView instance.

• Finally, we only consider apps that enable JavaScript execu-
tion, i.e., setJavaScriptEnabled(true) should be called.

3.1.2 Web Permission Enforcement in WebView. To improve pri-
vacy protections, apps have to ensure that users are provided with
appropriate prompts when a loaded website within an app executes
privacy-sensitive JavaScript API(s) (see Section 2.1), such as GPS
data. If an app’s WebView does not require access to sensitive data,
it should deactivate this capability. In Androids’ WebView, develop-
ers must explicitly implement such web permission enforcement.
For example, like standard browser implementations, upon a user’s
first visit to a website that requests location access, WebView should
present a prompt to the user, seeking their consent to grant or deny
the permission, or simply deny based on the apps’ functionality.

To achieve this, developers have to override and implement
the special callbacks that handle the permission requests from
websites (see Section 2.2). For instance, the onGeolocationPermis-
sionRequestPrompt method handles the location permission, and
onPermissionRequest handles the access to the devices’ camera and
microphone. For developers, it’s important to create prompts that

interact with the app’s UI thread, informing users about requested
permissions (see Listing 5 in Appendix). If websites don’t need
access to sensitive data, overriding special callbacks isn’t necessary,
as Android’s WebView disables execution by default. Also, if apps
only load trusted first-party websites, prompts may not be needed.
In such cases, developers must ensure WebView doesn’t load ar-
bitrary URLs. We define an app as a potential PHA if it overrides
special callbacks without implementing user prompts. Additionally,
if WebView gains access to sensitive resources without prompts
and lacks validation to prevent opening third-party websites, it is
classified as a potential PHA.

In particular, we begin by employing Soot [59], a static analysis
framework designed for analyzing Java and Android apps, to de-
compile and statically analyze the app code to determine if the app
has overridden these special callbacks. Specifically, we scan through
the app’s bytecode to search for the signature of onGeolocationPer-
missionRequestPrompt and onPermissionRequest methods. We then
use Soot to construct the control flow graph (CFG) that includes
all the reachable API calls, in which the entry points are these
identified callbacks. Upon analyzing the CFG of these callbacks, we
determine whether the app permits WebView to access sensitive
information, and this process does not include the activation of UI
components. We classify this scenario as a potential PHA.

Specifically, we follow a similar approach used in prior work [75].
We first generate bytecode-level signatures for two implementa-
tions ofmisconfigurations related toweb permission enforcement in
WebView (granting the requested permissions without any enforce-
ment), i.e., Listing 3 allows all requested permissions for WebView
and its loaded content, while Listing 4 grants location permissions
(see Listing 2 for the original Java code of these two methods). We
then use these two bytecode-level signatures to search for poten-
tial PHAs. This classification is grounded on the premise that the
absence of UI component engagement could mean a lack of trans-
parency or user consent. This analysis enables us to understand
how permissions are handled within the app and whether they
adhere to the web standards.

We further analyzed the implementation of the shouldOver-
rideUrlLoading() method within WebViewClient. In Android, this
method allows developers to define custom behavior for handling
URL loading within a WebView. This method is invoked when a
new URL is clicked, enabling developers to decide whether to load
the URL in the sameWebView, open it in a different app, or perform
some other action. As such, it is possible for those potential PHAs
to have other privacy protections, e.g., preventing the apps from
opening any third-party links and navigating the third-party links
to standard browser apps, only loading first-party trusted links.
Particularly, if a shouldOverrideUrlLoading is overridden, return-
ing true causes the current WebView to abort loading the URL,
while returning false causes the WebView to continue loading the
URL as usual (which is the default behavior of WebView if the
WebViewClient is provided).

3.2 Identify PHAs by Dynamic Testing
Recall that our dynamic analysis aims to demonstrate how easily
these PHAs can be triggered to open targeted malicious websites
and collect users’ sensitive information on a large scale, without
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requiring a complex execution context. As such, without perform-
ing a comprehensive context analysis for dynamic execution, we
propose a straightforward approach that includes two steps. First,
for a given potential PHA, we decompile the app to analyze the app
manifest file to identify the potential browsable activities (apps’
functionality that can be invoked by other apps). We then automat-
ically invoke these browsable activities to visit our test pages. In
practice, these two steps can be easily done by any installed app on
the same device. A malicious app could simply launch these poten-
tial PHAs to visit targeted malicious websites without conducting
a comprehensive context analysis of the those potential PHAs.

In the following, we outline how we conduct each of the steps
in more detail.

3.2.1 Identify Browsable Activity. The Android apps’ manifest file
(AndroidManifest.xml) describes essential information about An-
droid apps, including all activities, services, broadcast receivers, and
content providers [4]. To identify the potential browsable activities
(i.e., the activity can be launched by components of other apps), we
first use Androguard to decompile the given app and extract its man-
ifest file [3]. We then analyze the apps’ manifest to select activities
that have the attribute “android:exported=true”, which determines
whether an activity, service, or receiver is accessible to external
apps. For instance, when one shares a file, the presence of available
apps allows you to open the corresponding activity, meaning that
it’s declared in the manifest with “android:exported=true”.

Further, we also want to determine which apps are browser apps,
i.e., an app capable of opening arbitrary websites. More specifically,
these apps must declare this capability in the apps’ manifest file
via Intent filters that handle HTTP/HTTPS URL schemes. For the
Android OS to recognize the app as a browser app, it also has to
specify “android.intent.category.APP_BROWSER” in the Intent filters.
The Android OS uses this Intent-based filtering to display available
browser options when users click a URL.

3.2.2 Visit Test Page. Our goal is to detect PHAs that expose sen-
sitive data to any websites without web permission enforcement.
To do that, we first install the apps and automatically grant the
necessary permissions specified in the app manifest. The idea is
that users may grant permission to host apps via Android OS per-
mission. However, it does not mean that every website they visit
gains access to their sensitive data.

Subsequently, from the list of browsable activities (identified
from the previous step), we use Android Debug Bridge to invoke
these activities to visit our test pages2. The test pages include
JavaScript code that invokes a set of privacy-sensitive JavaScript
APIs, i.e., Geolocation API and Media Capture and Streams API [15].
The collected data will be transmitted to our testing server and then
saved in a persistent database. When the app opens the test pages,
a visit record is created in the database, allowing us to monitor for
any privacy issues and identify any access to sensitive data such
as location, camera, and audio stream data. If we can successfully
collect sensitive data through these JavaScript APIs during dynamic
testing, the app is considered harmful to users’ privacy.

2adb shell am start -n {package_name}/{activity_name} -a android.intent.action.VIEW
-d “{testing_url}”

3.3 Limitations
While our analysis provides valuable insights into potential PHAs,
we naturally face certain limitations, which potentially lead to
incomplete results.

Like another static analysis approach, our pipeline might not
capture some app behaviors that occur dynamically or more com-
plex scenarios at runtime. For instance, we consider apps declar-
ing WebView in layout files, but this may overlook those using
only dynamically generated WebViews. Further, by combining CFG
and bytecode-level signatures to detect improper web permission
enforcement in onPermissionRequest and onGeolocationPermission-
sShowPrompt, our approach can account for some variations of the
signatures in Listing 3 and Listing 4, such as when developers add
extra statements (e.g., logging). In these cases, the semantics of
granting permission by default would remain unchanged. However,
more complex patterns might be overlooked by our approach. For
instance, our focus is primarily on apps that completely lack web
permission enforcement in straightforward ways, i.e., granting per-
missions without invoking UI thread. However, more complicated
scenarios exist. For example, an app might first request Android
permissions (involving a UI thread) and perform certain operations
when a website requests access to sensitive data. Our approach may
overlook the need for prompts for such cases, since an Android
permission dialog may appear on the first visit to a web page but
not on subsequent visits, a scenario our static analysis does not
account for. Generally speaking, all these are potential causes for
false negatives.

Future research could reveal additional potential privacy harms,
although this does not contradict our current findings. We acknowl-
edge that our purely static analysis-based report on potential PHAs
might lead to an overestimation, which is why we added a manual
sampling and confirmation step. Nonetheless, it illuminates critical
aspects of web permission enforcement in Android’s WebView, un-
covering potential privacy concerns for users. Future research can
build upon our findings to achieve more precise results and explore
these privacy problems in greater depth. Further, our analysis does
not fully analyze the prevention of third-party website loading,
which might not be solely managed by the shouldOverrideUrlLoad-
ing but can also be handled through other functions or network
restrictions. However, this will not affect our results regarding the
app having an implementation that simply returns false.

4 Large-Scale Study
In this section, we present findings from our analysis of Android
apps on Google Play, focusing on WebView’s web permission en-
forcement. Particularly, we detail the app dataset construction
process, discuss potential PHAs that may pose privacy risks, and
demonstrate how malicious entities can easily exploit those poten-
tial PHAs to access sensitive data without user awareness.

4.1 App Dataset Construction
Our analysis aims to assess the state of privacy harm of WebView
in Android apps in the wild. Therefore, we crawled all free Android
apps from July 2023 to September 2023 on the Google Play store
based on the list of apps from AndroZoo, which has 5.8M Android
apps’ names [2]. However, because of country-specific restrictions,
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the presence of outdated apps (removed from Google Play) and
paid apps in AndroZoo’s list, time limitations, and the access rate
limit set by Google Play, we were unable to crawl all the apps.
Specifically, we managed to crawl 821,468 free Android apps, which
constitutes approximately 33.82% of the total number of free apps
currently available on Google Play by November 2023 [68].

Focusing on these 821,468, we acknowledge that our findings
cannot be generalized to all apps on Google Play, e.g., paid apps.
However, this approach aligns with previous large-scale Android
security research [24, 48–50, 53, 62]. We note that this limitation
will not impact the findings of our study, including the privacy
issues we discuss in this paper. We further applied a filtering step
to get the most relevant apps to our study (e.g., focusing on apps
that have the capacity to access devices’ sensitive information, such
as GPS data or the device’s camera). Specifically, we consider only
apps which meet the following criteria:

• Apps request INTERNET permission, which is required to
visit websites on the Internet.

• Apps request at least one of the following permissions: LO-
CATION, CAMERA, MICROPHONE. These apps can access
and disclose this sensitive information, classified as personal
data under data protection laws (e.g., GDPR, CCPA).

As a result, we obtained 276,760 Android apps. In the next steps,
we present how to identify potential PHAs by static analysis.

4.2 Identify Potential PHAs by Static Analysis
From 276,760 Android apps, we identified 102,436 apps that contain
WebViewwithin their code. Further examination showed that out of
these, there are 54,605 apps that have enabled JavaScript execution
within their WebView settings, i.e., setJavaScriptEnabled(true), and
have configured their implementation ofWebViewClient through
method setWebChromeClient, allowing them to handle JavaScript
dialogs and other features, such as granting sensitive permissions
to WebView. In the following, we focus on these 54,605 apps that
are statically relevant to our study.

As a result of this step, we successfully constructed the control
flow graphs (CFGs) for 28,185 apps out of a set of 54,605 apps.
These particular apps had overridden and implemented at least one
callback handlingwebsite permission requests. To be specific, 22,532
apps had overridden the onPermissionRequest callback, while 26,306
apps had overridden the onGeolocationPermissionsShowPrompt.

Notably, within the subset concerning onPermissionRequest, 18,873
apps — or 83.76% of the 22,532 that implemented this callback, were
identified as originating from third-party libraries (see Figure 3).
Similarly, for the onGeolocationPermissionsShowPrompt, 21,706 apps,
accounting for 82.51% of the 26,306 utilized this callback, were classi-
fied as third-party libraries (see Figure 4). This finding suggests that
a majority of WebView components are derived from third-party
services or utilities commonly used across various apps.

This widespread integration of third-party solutions raises no-
table privacy concerns, particularly when acknowledging that over
80% of the overridden methods are contributed by these third-party
services. As such, it can lead to significant privacy implications, as
these services may have data handling and privacy practices dif-
ferent from those of the primary app developers. As noted in prior
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Figure 3: Top 10 third-party libraries overriding onPermis-
sionRequest.
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Figure 4: Top 10 third-party libraries overriding onGeoloca-
tionPermissionsShowPrompt.

research [8, 17, 20, 48, 58] , it is often observed that third-party com-
ponents integrated into Android apps significantly influence their
default behaviors, specifically exposing developers and users to
severe threats of security and privacy vulnerabilities. For instance,
these risks include the unauthorized disclosure of sensitive user
information, the exploitation of the privileges of the host app, and
the tracking of user activities, which potentially violate data protec-
tion laws. Our findings contribute to the existing body of evidence
concerning the privacy concerns associated with the integration
of third-party services in Android apps. Notably, this integration
not only has the potential to expose user-sensitive data to a single
third-party service but could also lead to the leakage of such data
to a multitude of services on a larger scale.

We have identified 12,109 distinct potential PHAs, which consti-
tute 15.35% of the 54,605 apps analyzed. Specifically, we discovered
11,430 apps that grant location access to every website loaded via
the WebView component (matching the bytecode-level signature
in Listing 4). Furthermore, 992 apps grant permissions, such as
camera and microphone access to WebView without any form of
verification (matching the bytecode-level signature in Listing 3).
These apps are classified as potential PHAs since they do not im-
plement any form of user notification or consent prompts. The lack
of such protective measures means that any website accessed via
WebView can retrieve user sensitive data, potentially without the
user’s knowledge or explicit permission.

Figure 5 and Figure 6 illustrate the top ten third-party libraries
that have overridden the onGeolocationPermissionsShowPrompt and
onPermissionRequest methods to grant permissions without enforce-
ment. Specifically, regarding onGeolocationPermissionsShowPrompt,
we observed that com.freshchat.consumer (Freshchat) accounted
for 46.23% of the 11,430 identified potential PHAs. In the case of



Open Access Alert: Studying the Privacy Risks in Android WebView’s Web Permission Enforcement ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

0 1,000 2,000 3,000 4,000 5,000 6,000
Number of apps

com.freshchat.consumer
com.reactnativecommunity.*

com.goodbarber.v2
com.seattleclouds.g
versioned.host.exp

com.flutter_webview_plugin.*
com.seattleclouds.x0
com.bzapps.widgets

com.bzapps.web
com.seattleclouds.f

C
la

ss
 n

am
es

5,284 (46.23%)
1,247 (10.91%)

525 (4.59%)
314 (2.75%)

220 (1.92%)
209 (1.83%)
187 (1.64%)
183 (1.6%)
183 (1.6%)
154 (1.35%)

Figure 5: Top 10 third-party libraries overriding onGeoloca-
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Figure 6: Top 10 third-party libraries overriding onPermis-
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onPermissionRequest, com.spayee.reader was responsible for 13% of
992 potential PHAs.

In our analysis, we discovered 5,691 apps, which represent 47%
of the 12,109 potential PHAs that had implemented the shouldOver-
rideUrlLoading method. However, these 5,691 simply returned false.
This implies that these 5,691 potential PHAs allow the WebView
to load any links without restriction. Consequently, if these po-
tential PHAs permit users to input arbitrary URLs, it creates an
opportunity for malicious actors to deceive targets into opening
malicious websites. This situation could lead to the secret collection
of sensitive user data since there are no permission prompts to
notify users, and there are no restrictions on the URLs that can be
visited. In our study, we did not identify or differentiate whether
the apps have the functionality to enable users to input arbitrary
URLs. However, even if the app does not provide this feature, many
apps utilize WebView to display their own web pages, e.g., the app’s
privacy policy usually links to third-party services where users can
navigate to other sites with social media links or Google search. As
such, without URL restrictions in place, users can easily navigate to
other websites, thereby exposing their data freely to external sites.

Manually Analyzing Potential PHAs: To gain insight into the
actual behaviors of those 12,109 potential PHAs, we conducted an
additional manual analysis. Specifically, we first used Frida [26], i.e.,
a dynamic binary instrumentation toolkit, to intercept and modify
the WebView#loadURL method for loading our test pages. We then
installed the app on the physical device and manually browsed
the app functionality within five minutes. This approach aimed
to test whether potential PHAs would open our test pages and
whether we can collect sensitive data successfully, indicating a lack
of web permission enforcement or other protective mechanisms
against the loading of third-party websites. We used this method to

investigate the issue while interacting with the app’s functionality,
as manually inspecting the app’s binary code is infeasible at scale.
Out of the 12,109 potential PHAs, we successfully intercepted and
modified 3,046 of them (without exception error from Frida). Other
apps failed to use Frida for different reasons, such as installation
issues on our physical devices due to unsupported libraries, or
failure to hook or override the targeted method. We then randomly
sampled 100 apps out of 3,046 apps since it is impractical to analyze
all of them. Among 100 potential PHAs, we successfully installed
and browsed the functionality of 59 apps. We could not analyze the
remaining 41 apps due to internal login requirements (e.g., used
internally by a company) or runtime errors while using them (e.g.,
crashed upon opening). Out of 59 apps, our test pages successfully
collected sensitive data from 42 apps.

4.3 Identify PHAs by Dynamic Testing
In this section, we present our results from dynamic analysis, which
aims to demonstrate how easily these PHAs can be triggered to open
targeted malicious websites and collect users’ sensitive information.

4.3.1 Experiment Setup and Overview. Our experimental tests were
executed on three x86_64 Debian servers, each equipped with 192
CPUs and 1.5 TB of RAM. We utilized the Android Virtual Device
for managing Android emulators and the Android Debug Bridge, a
command-line tool, for communication with the devices, thereby
automating our entire process (see Section 3). Throughout our
experimentation, we used 180 Android emulators, especially using a
Pixel 3 model operating on Android API 30. On average, the analysis
for a single app, including installation time, the wait for the app to
fully initialize, and loading the test page, took approximately one
minute. This setup allows us to identify the apps that can access our
test pages on a large scale. To confirm PHAs that expose sensitive
information without permission enforcement, we retested the apps
capable of visiting our test pages on physical devices (Google Pixel
6) to prevent scenarios where the app detects an emulator and
behaves differently. Further, we randomly selected 1,000 apps that
did not access our test pages through emulators and retested on
physical devices. As a result, these apps were unable to load the
test pages, even when tested on physical devices.

Out of 12,109 potential PHAs, we identified 8,421 distinct brows-
able activities derived from 7,887 apps. Among these browsable
activities, a notable subset of 1,405 activities explicitly declared sup-
port for HTTP/HTTPS URL schemes, originating from 1,374 apps.
Moreover, our dataset contained a total of 5 browser apps (based
on the declaration on the apps’ manifest file, i.e., APP_BROWSER).

We ran our pipeline for all of the 8,421 browsable activities. As
a result, our pipeline successfully invoked 2,794 activities from
2,711 apps to open and visit our test pages. Notably, among these
2,794 activities, we only found 686 (25% of 2,794) activities that are
from the set of 1,405 activities declared support for HTTP/HTTPS
URL schemes. It indicates that in the majority of activities used to
present web-based content within the app (75% of 2,794), developers
do not intentionally expose the apps’ functionality to other apps
for presenting third-party web-based content. However, due to the
lack of validation, other apps can invoke these activities to perform
undesire functionality, e.g., open any websites.
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Figure 7: The taken screenshots while testing. The green but-
ton indicates that sensitive data was successfully collected.

We acknowledge that the success rate for opening the test page
was relatively low (only 2,794 activities), which is a well-known
limitation of dynamic analysis. The low coverage can be attributed
to the diverse app types and their complex behaviors (e.g., a di-
rect messaging app that requires selecting friends through several
screens before using a WebView to open an in-app browser when
sharing a link), which make comprehensive analysis challenging.
For example, among other reasons, that could be due to the complex
app-specific parameter handling, mandatory login requirements,
and some apps not installing correctly in our test environment.
However, these 2,794 activities allowed us to confirm the behavior
and functionality of these apps regarding their implementation of
web permission enforcement.

4.3.2 Privacy Harmful Apps in The Wild. Our experiment revealed
2,219 PHAs allowed our test pages to successfully collect sensitive
data without any web permission enforcement. Through dynamic
analysis, we proved that malicious entities can successfully exploit
these 2,219 PHAs to load any website that accesses sensitive data
without user knowledge. Figure 7 presents some sample screenshots
that were taken from our analysis pipeline.

Table 2 presents the summary of our findings, where each col-
umn presents the type of sensitive data and the number of PHAs
accordingly. Notably, sensitive data is not only exposed in isolation
but also is often combined with others. For example, we found 285
PHAs exposed location and camera access, while another 51 PHAs
exposed camera and microphone access. More seriously, we de-
tected 165 PHAs permitted access to all of these three sensitive data
(all, location, camera, and microphone), which raises a significant
privacy risk to users.

Generally, our analysis indicates the PHAs occur across different
app categories, as the top 3 categories that have more PHAs than
others are Health & Fitness (206 PHAs), Education (170 PHAs), and
Shopping (100 PHAs). Table 3 shows the top 10 PHAs in our dataset,
ranking by the number of installations. Among these, Phoenix and
Pi Browser are publicized as standard browser apps, which respec-
tively have more than 500M installs and 10M installs. Notably,
Phoenix Browser allows any website access to users’ sensitive in-
formation, including location, camera, and microphone, without
the user’s explicit consent. This means a significant threat to user
privacy and security, as it implies that personal data can be silently
harvested while users navigate the web. Additionally, we also ob-
served a lack of web permission enforcement by dating apps with

L C A L+C C+A L+C+A

1,271 199 22 285 51 165

Table 2: Number of PHAs that are categorized by type of
sensitive data. L = Location, C = Camera, A = Audio.

Package Name Installs Permission
L C A

com.transsion.phoenix 500M+ ✓ ✓ ✓
com.ebay.kr.auction 10M+ ✓ - -
com.fordeal.android 10M+ ✓ ✓ -
com.lwi.android.flapps 10M+ ✓ ✓ -
com.saramart.android 10M+ ✓ ✓ -
pi.browser 10M+ - ✓ -
com.taobao.htao.android 5M+ ✓ - -
digifit.virtuagym.client.android 5M+ ✓ ✓ -
ch.local.android 1M+ ✓ - -
com.almart.android 1M+ ✓ ✓ -

Table 3: Top 10 PHAs ranked by installation numbers.
The symbol (✓) indicates permission that can be accessed.
L = Location, C = Camera, A = Audio.

millions of installations. For instance, in the C-Date app, we were
able to silently invoke the app to take a picture, record the audio,
and then transmit it to our server without any enforcements3.

Further, we also want to understand the source of these prob-
lematic activities (differentiating between those originating from
first-party versus third-party libraries). As such, we consider an
activity to be a third-party activity (from third-party libraries) if
there are more than ten apps that embed these activities. We note
that the goal is not to identify particular third-party libraries but
to determine whether these issues originate from shared libraries
that could be utilized across multiple apps, including internal li-
braries employed by the same developer for various apps. There-
fore, we choose not to use dedicated third-party library detection
frameworks that could add significant runtime overhead, such as
LibScout [8]. Further, these frameworks do not specifically target a
particular activity identification, which is required for our purposes.
Similar to any other static analysis, our approach naturally suffers
from certain limitations, such as the app’s code being obfuscated,
and the results naturally only serve as a lower bound. However, it
will provide an initial insight into the results of third-party libraries
(see the second row in Table 2).

More specifically, upon manual examination of the top ten third-
party libraries, we were able to find that eight out of ten originated
from online app generators (which contributed to 231 out of 2,219
PHAs)4. These generators simplify implementation through drag-
and-drop module assembly. However, it’s crucial to note that this
convenience introduces security risks that require careful mitiga-
tion to protect both end-users, as highlighted in a prior study by
Oltrogge et al. [52]. Our findings also provide evidence of new pri-
vacy issues, relating to the absence of permission enforcement in
WebView.
3The developers (Phoenix Browser and C-Date) have confirmed the issues were recti-
fied in the latest version after our email notification in Section 5.
4For example, online app generators including https://modolabs.com/, https://imweb.me/,
https://appsgeyser.com/, https://yapp.li/en/.
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To sum up, our key takeaways and lessons learned are:
(1) Privacy issues with Android’s WebView often arise in

apps not primarily for web browsing. However, even
purpose-built browsing apps, where privacy protection
is crucial, face these problems.

(2) Most privacy issues arise from online app generators
and third-party libraries, posing significant risks to
users.

(3) At the same time, even first-party code frequently con-
tains such errors, making it paramount to inform their
developers about the issues.

5 Notifying App Developers
In our efforts to assist developers in addressing PHAs, we reached
out to app developers to inform them about the privacy problems of
their apps, particularly those that lack web permission enforcement
in Androids’ WebView, to prevent potential malicious actors from
abusing these PHAs. Further, we also aim to understand the root
causes of these issues. As such, we briefly inquire with developers
about their awareness of the WebViews’ privacy problems and
their understanding of web permission enforcement in Androids’
WebView. We aim to keep our inquiry brief to encourage more
feedback instead of the complete surveys. In our email, we inform
developers about our study’s aims, and our approach and provide
our contact details for any queries, noting that our institution does
not require ethics approval for such research. We collect developers’
contact by using email addresses from the Google Play Store. Like
prior research, we used a web interface rather than an email to
detail our findings and proof of concepts [12, 43, 48, 49, 60].

5.1 Email Notifications
On November 1, 2023, we sent a total of 5,099 emails to app de-
velopers, who are the point of contact for 2,219 PHAs and 12,109
potential PHAs. We note that the count of developers who received
notifications is lower than the total number of PHAs and potential
PHAs. This is because, in cases where a single developer manages
multiple apps, we consolidated our notifications to ensure that each
developer received a single email containing links to all relevant re-
ports. Further, we also adhered to the best practices recommended
by prior research, providing developers the option to opt out of
our study. By November 27, 2023, we observed that 473 developers
accessed our reports, who are responsible for 756 distinct apps. In
addition, 58 unique developers answered our questions regarding
the Androids’ WebView. Further, one developer wanted to stop
receiving communication from us on the subject. The response rate
to our questionnaires was low, as might be expected from sending
unsolicited emails to prospective participants [1, 48, 49, 66].

5.2 Developer Feedback
Among the pool of 58 respondents, each individual acknowledged
the receipt of our email and conveyed their intention to consider
its contents carefully. Notably, four respondents explicitly stated
their decision to remove their respective apps from the app store
in response to our communication. Further, it is important to note

that not all developers responded to all the questions outlined in
our email notifications.

In particular, among the 15 responses we received to our first
question about WebView usage in mobile apps (Q1. Did you inten-
tionally allow your app’s WebView to open any websites?), 11 devel-
opers stated that they did not intend to allow WebView to open
external websites. In contrast, 4 developers specifically designed
their apps to incorporate WebView for the purpose of accessing
external websites.

In response to our second question (Q2. Did you intentionally
allow JavaScript to access $permission$ features? Why did you not
implement the prompts to request users’ permissions when JavaScript
access to sensitive data like standard browser apps (Google Chrome
or Firefox)?), 13 participants provided their insights regarding Web-
View’s access to sensitive information. Surprisingly, 10 of them
expressed no intention to allow WebView access to these capabili-
ties. In contrast, only 3 respondents indicated that they intended
to enable such access, but exclusively for a select set of trusted
websites, including third-party domains. Notably, despite these
intentions, our static analysis did not identify any enforcement
measures to ensure the implementation of these intentions.

We received responses from 12 participants for our third ques-
tion (Q3. Are you aware that granting these permissions to the Web-
View without any privacy protection implementations (prompt to
inform users) leads to user privacy at risk?). Interestingly, there was
a notable division in their level of awareness regarding the pri-
vacy implications of the issue at hand. Specifically, 5 respondents
indicated that they possessed knowledge about the privacy con-
cerns associated with the topic, demonstrating an understanding of
the potential privacy risks and implications linked to their mobile
applications. In contrast, the majority, comprising 7 respondents,
expressed a lack of awareness regarding the privacy aspects of the
issue. For non-responders, there might be a social desirability bias
influencing them, possibly because they wish to avoid admitting
their lack of knowledge by saying they do not know about the
subject. This distinction highlights the diverse levels of awareness
among developers when it comes to privacy considerations in their
app development endeavors.

Regarding the final question (Q4. What type of support (e.g., doc-
umentation or automated tools) would benefit you to address such
issues?), we received responses from 6 participants. Remarkably,
every single one of these respondents expressed the need for im-
proved documentation and requested the availability of automated
tools, similar to our pipeline, to aid in the detection of these issues.

The findings from our collected data reveal that the problem
is not only widespread but also commonly misinterpreted by
app developers, e.g., “We were not aware that manual privacy
protection implementations were required on Android with the
current version”. Further, security and privacy problems fre-
quently stem from online app generators [52], e.g., “I create
apps using an online app development website that allows users
to create apps without programming”.
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6 Dicussion
Our findings show the widespread absence of web permission en-
forcement in WebView, despite existing web standards for privacy
protection. We now explore the related challenges.

6.1 Privacy and Legal Implications
By default, Android’s WebView permits app developers to handle
web permission requests on their own. Our findings suggest that in
real-world settings, apps that utilize Android’s WebView and fail to
comply with the privacy protection guidelines outlined in Web Per-
missions [64] are vulnerable to potential exploitation by malicious
actors. These PHAs can load websites that access sensitive data like
location, camera, and microphone without the user’s knowledge,
leading to significant privacy concerns. Such websites can secretly
gather user data during browsing, and malicious apps could misuse
this to collect information without user consent. Often, users grant
broad permissions to host apps, unaware that this action allows
every website they visit through the app to access their sensitive
data. More importantly, this practice could also result in GDPR non-
compliance, particularly with Article 25, which requires sufficient
technical and organizational measures for information security. Re-
cently, many cases involving fines due to insufficient technical and
organizational measures to ensure information security [61, 69, 70].

For displaying third-party websites, Google suggests using Cus-
tom Tabs (CTs) unless developers have specific requirements [5],
e.g., interpreting the loaded content. CTs in Android, as opposed
to WebView, provide an enhanced user experience, strengthened
security, and improved privacy. This is because Custom Tabs are
powered directly by the user’s preferred browser, which inherits
the browser’s standard features. As such, developers do not need
to write custom code to handle permission requests or permission
grants. Surprisingly, the adoption of CTs is relatively low, within
our dataset, we identified only 10,307 apps that utilized CTs.

6.2 App Generators and Discussion Platforms
Feedback from developers has also highlighted concerns with on-
line app generators (i.e., 7 responses indicating app development
via such platforms, for example “I create apps using an online app
development website that allows users to create apps without program-
ming”). These tools, designed to ease app development, deployment,
and maintenance, offer cost-effective solutions by optimizing differ-
ent phases of the app lifecycle. They enable simplified app creation
through drag-and-drop modules and offer limited customization op-
tions. Oltrogge et al. [52] have shown that this convenience comes
with security vulnerabilities that need to be addressed to safeguard
both end-users and online services. Our study highlights another
inherent privacy issue in these platforms.

Further, platforms such as Stack Overflow, well-known for on-
line programming discussions, are valuable to software developers,
offering a rich source of dynamic discussions and ready-to-use
code snippets. Previous research has highlighted Stack Overflow
as an essential tool for developers, who often copy and paste code
snippets from these platforms into their projects. This includes in-
stances where insecure code snippets are transferred into Android
apps [24, 32]. To understand the impact of this copy-paste behavior

on web permission enforcement in Android’s WebView, we con-
ducted a targeted search for relevant questions and their answers on
these platforms. Specifically, we searched for questions tagged with
[android] [webview] that contained the word “permission” and had
at least one answer. This led us to 217 relevant questions. Notably,
among these, we identified 19.3% answers that suggest potentially
privacy-harmful behaviors, such as granting permissions without
proper enforcement.

6.3 Recommendations
Based on our findings, we provide recommendations for enhancing
privacy and ensuring compliance when using Android’s WebView.
As such, developers can protect the rights of data subjects and be
transparent about how data is collected and used.

• Implement Explicit Permission Requests: Ensure that
any access to sensitive data like location, camera, or mi-
crophone through WebView prompts the user for explicit
consent, clearly explaining the purpose of the request (e.g.,
see Listing 5 in Appendix).

• Restrict Permissions to Trusted Content: LimitWebView
to load content only from trusted sources. Implement valida-
tion checks to prevent loading of unverified or potentially
malicious websites that could exploit granted permissions.

• Transition to Custom Tabs (CTs). For use cases that don’t
require a highly customized web experience or only involve
displaying external web content, we recommend developers
transition to CTs. CTs are powered by the user’s preferred
browser, adhering to web standards for permissions [64].
This eliminates the need for custom code to handle permis-
sions, simplifies implementation, and enhances user privacy.

7 Conclusion
In this study, we filled a critical research gap by conducting an ex-
tensive analysis of how Android apps implement WebView for web
permission enforcement. We introduced an automated pipeline to
identify privacy-harmful apps (PHAs). In our analysis of 276,760 An-
droid apps in Google Play, we identify 54,605 apps that instantiate
WebView and enable JavaScript executionwithin theirWebView set-
tings. By searching for bytecode-level signatures of misconfigured
implementations in web permission enforcement within WebView,
our pipeline detects 12,109 potential PHAs (out of 54,605 apps)
that compromise user-sensitive data due to a failure to implement
web permission enforcement. Further, we demonstrated how 2,219
PHAs could be exploited to access sensitive user data without user
awareness. This evidence reveals substantial privacy risks, enabling
widespread data collection by websites and malicious apps. Proac-
tively reaching out to affected developers, we uncovered common
issues and misconceptions. Collaboration between developers and
platform providers is important for enhancing user protection and
privacy in app development.
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1 @Override

2 public void onPermissionRequest(final PermissionRequest request) {

3 if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA)

4 == PackageManager.PERMISSION_GRANTED) {

5 String url = request.getOrigin().toString();

6 AlertDialog.Builder builder = new AlertDialog.Builder(this);

7 builder.setTitle("Confirmation");

8 builder.setMessage("Allow" + url + "to use your camera and

microphone?");↩→
9
10 // Add Yes button

11 builder.setPositiveButton("Yes", new

DialogInterface.OnClickListener() {↩→
12 @Override

13 public void onClick(DialogInterface dialog, int which) {

14 request.grant(request.getResources());

15 dialog.dismiss(); // Close the dialog

16 }

17 });

18
19 // Add No button

20 builder.setNegativeButton("No", new

DialogInterface.OnClickListener() {↩→
21 @Override

22 public void onClick(DialogInterface dialog, int which) {

23 // Action for No button

24 request.deny();

25 dialog.dismiss(); // Close the dialog

26 }

27 });

28
29 // Create and show the dialog

30 AlertDialog alertDialog = builder.create();

31 alertDialog.show();

32
33 request.grant(request.getResources());

34 } else {

35 request.deny();

36 }

37 }

Listing 5: The WebView notifies users of camera access re-
quests and lets users decide via a custom prompt.
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