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Abstract—The web has evolved from a way to serve static
content into a full-fledged application platform. Given its
pervasive presence in our daily lives, it is therefore imperative
to conduct studies that accurately reflect the state of security
on the web. Many research works have focussed on detect-
ing vulnerabilities, measuring security header deployment, or
identifying roadblocks to a more secure web. To conduct these
studies at a large scale, they all have a common denominator:
they operate in automated fashions without human interaction,
i.e., visit applications in an unauthenticated manner.

To understand whether this unauthenticated view of the
web accurately reflects its security as observed by regular
users, we conduct a comparative analysis of 200 websites. By
relying on a semi-automated framework to log into applications
and crawl them, we analyze the differences between unauthen-
ticated and authenticated states w.r.t. client-side XSS flaws, us-
age of security headers, postMessage handlers, and JavaScript
inclusions. In doing so, we discover that the unauthenticated
web could provide a significantly skewed picture of security
depending on the type of research question.

1. Introduction

The web has won. Users spend more time on the web
than ever before and perform all kinds of actions, from
searching for information, over entertainment, to banking
and business. However, attacks on websites and users are
a constant threat, and news reports about hijacked accounts
and breached websites release almost daily. Over the years,
much research has focussed on detecting vulnerabilities and
deployment of countermeasures at scale using automated
crawlers [22, 23, 26, 36, 43, 44]. However, such crawlers
usually use fresh browser instances, and all rely on the
tacit assumption that what they measure is a good enough
approximation of what real users would encounter.

There is an ever-growing body of research, particularly
in the privacy domain, examining differences between var-
ious crawling configurations and standard user browsers,
which shows that geolocation, IP address, and crawling
technology may impact the results. Varying results can be
due to differing behavior based on user-agent switching,
legislation that governs the web (e.g., the GDPR in Europe),
or merely bot detection mechanisms deployed by major
CDN providers [1, 2, 11, 21, 50]. The fact that users

do not visit websites in fresh browser profiles every time
but instead have rich information saved in their browsers
(such as visited subpages, being authenticated, and having
accepted cookies) has yet to be examined in detail in the
area of security. One recent study by Klein et al. showed that
consenting to cookie banners increases the included third-
party scripts by 45% and, in turn, resulted in 55% more
verified XSS exploits [25]. Other works have shown that
websites deliver different security headers to authenticated
and non-authenticated requests enabling XS-Leaks [32, 46].

In essence, most prior work looking at understanding
security threats on the web has been performed without
establishing meaningful user state. This paper systematically
analyzes the post-login security landscape and compares it
with its pre-login counterpart to close this research gap.
We explicitly answer the following overarching research
question: Does the security landscape differ significantly
between logged-in users and their non-logged-in counter-
parts? Are the results strictly better, worse, or comparable if
there are differences? Can we identify any specific patterns
in the observed data? And, of utmost importance for both
past studies and future research: is a non-logged-in view of
the web an accurate reflection of the general state of security
on the web?

To answer these questions, we created a semi-automatic
framework to create accounts and login on various websites
and use it to perform the largest-to-date study on the post-
login security landscape on 200 sites. We study security
header usage and misconfigurations, JavaScript usage and
dependencies, reflected and persistent client-side XSS, and
postMessage issues. The results of our experiments show
that depending on the research question and subject of study,
the differences between authenticated and non-authenticated
crawlers can be essential and should be considered by future
research in the area of web security.

To sum up, our paper makes the following contributions:
• We open-source a semi-automatic framework to ease

future post-login studies (Section 4).
• We create a systematic methodology to study the secu-

rity landscape of websites in different states (Section 5).
• We perform a comprehensive study on security dif-

ferences between pre-login and post-login websites by
analyzing 200 sites across four experiments (Section 7).

• We discuss the impact of our results and propose
recommendations for future studies (Section 8).
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2. Background

Given the web’s success, attackers have also found their
way to it. Modern websites are plagued with a plethora of
security issues, and their attack surface keeps increasing
due to applications and browsers getting more complex.
Apart from individual well-publicized attacks and reports
to singular websites by penetration testers or bug bounty
programs, most of the knowledge of the state of the security
on the web is constructed by web crawlers testing for
security issues on a large scale.

Over the years, various attacks have been found, most
of which are mitigated after the initial discovery through
various security mechanisms. For example, the long-running
reign of Cross-Site Scripting (XSS) can be mitigated by
deploying a Content Security Policy (CSP). Similarly, at-
tacks such as Clickjacking have their own countermeasures
by controlling framing through CSP’s frame-ancestors or
the (deprecated, yet still widely used [6]) X-Frame-Options
header. In the following, we outline the issues that have
been covered by prior work, which sets the scene for the
experiments we conduct throughout our paper.

2.1. Client-Side XSS

Cross-Site-Scripting (XSS) is the most prevalent attack
on the web. It allows attackers to execute code on a website
in the context of the attacked user. XSS is commonly
classified by two dimensions: where the vulnerable code is
located, server-side or client-side, and whether the payload
is permanently stored, persistent, or reflected.

While prior work has developed techniques to detect
server-side XSS [9, 19], scanning for these at scale is
ethically questionable. Specifically, finding persistent XSS
implies that a payload would also be visible to others,
which either interrupts regular browsing or, worse, allows
others to understand the susceptibility of the site to an
XSS and develop an actual exploit. To that end, our work
focuses on client-side XSS. This type of Cross-Site Scripting
was first described by Klein [24] as XSS of the third kind
or DOM-based XSS. More recent work has instead used
the term client-side XSS to accurately reflect the usage
of non-DOM APIs for both sources and sinks. Contrary
to server-side XSS, where the actual vulnerable code is
unknown to the browser, client-side XSS implies that all
vulnerabilities are contained in client-side code and, thus,
executed in the browser. Prior work [28, 30, 43] has used
a taint tracking approach to find XSS. Since XSS boils
down to data flows from attacker-controlled sources (e.g.,
the URL) to dangerous sinks (e.g., eval), taint tracking is
well-suited. As was done in prior work, we leverage the taint
data with an exploit generator to confirm the presence of a
vulnerability. For this, we consider both reflected client-side
XSS (through URLs or the referrer [28, 30]), and persistent
client-side XSS (from Local Storage or cookies [43]). Most
importantly, since client-side XSS occurs exclusively on our
client, no other visitors of the tested site will be affected.

2.2. Security Headers

The web platform initially focussed exclusively on func-
tionality rather than security. This is still evidenced today
by the fact that authentication is enabled through cookies,
a mechanism never intended to be related to security. Over
the years, various mechanisms have been added to address
security issues in the platform retroactively. Here, we outline
the three most prevalent and impactful security headers and
the attacks they mitigate.

2.2.1. Content-Security-Policy. Cross-Site Scripting (XSS)
boils down to a simple fact: attacker-controlled code is
executed within the confines of a victim application. Nat-
urally, this code is not desired to be present by the site’s
developer. The original idea of the Content Security Policy
(CSP [41]) was to enable an allowlist of scripting resources
that should be executed. This would enable the developer
to specify the scripts they wanted to execute, leaving it to
the browser to ensure that any script not explicitly allowed
would be blocked. However, CSP’s first version did not
support a meaningful way to enable developer-controlled
inline scripts. This is because browsers either blocked all
inline scripts if some CSP was specified, or allowed all in-
line scripts in case the dreaded unsafe-inline keyword
was contained in the script-src directive. To overcome this,
CSP level 2 introduced the concept of nonces and hashes,
allowing developers to attach a unique value to inline scripts
(nonce case) or allow inline scripts by their hash. In either
case, an attacker would be unable to guess the nonce or
find a hash collision, thereby allowing fine-grained scripting
control. CSP’s specification is currently at level 3 [8], which
includes additional directives that go well beyond scripting
control.

The first major other use case is the enforcement
of TLS. The introduction of the upgrade-insecure
-requests directive allowed site developers to ensure
that resources included in their page could not be (acci-
dentally) loaded through insecure HTTP connections. This
feature also comes in handy when migrating from HTTP to
HTTPS [35], as any remaining HTTP links are seamlessly
migrated to their HTTPS counterparts.

Finally, the third major use case of CSP is framing
control. The web stack provides ample ways for an attacker
to abuse it. One attack enabled by the freedom to position
HTML elements anywhere on a page and even control their
opacity is Clickjacking. Here, the attacker finds some page
on the vulnerable site which causes a state-changing action
based on a single button click, e.g., a one-click buy button in
a web store. They then load the vulnerable page in a frame,
position the frame on top of some element the user can be
lured to click on (e.g., a button to load more content or
one that is part of a game), and make it transparent. Hence,
the unknowing victim trying to click on the attacker page’s
button instead clicks into the invisible iframe and onto the
one-click buy button. To overcome this, site operators can
use CSP’s frame-ancestors directive. This specifies
which URLs are allowed to frame a particular page. As
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CSP is enforced by the browser, the attacker may still try
to force the victim to load the target page in an iframe.
However, unless the attacker’s URLs are allowed within
frame-ancestors, the browser refuses to load the page,
thereby stopping the attack.

2.2.2. X-Frame-Options. The predecessor to CSP’s
frame-ancestors is the X-Frame-Options (XFO)
header. While the syntax of the header and its flexibility
(e.g., to allow multiple sources to frame a page) are limited,
the functionality roughly aligns with its CSP counterpart.
XFO instructs the browser to block the loading of a page,
either always or for cross-origin embeddings. Notably,
XFO was only formally specified [17] well after it had
been implemented by various browsers, which led to
inconsistent support across browsers. As a side effect that
is still observable today, modern browsers do not support
the ALLOW-FROM directive, which was meant to enable
a single origin to frame the page. However, site operators
may still rely on this old configuration, which effectively
nullifies the protection given by XFO. Importantly, though,
since CSP’s frame-ancestors was meant to replace
XFO entirely, if CSP is configured to control framing,
modern browsers ignore the XFO header altogether.

2.2.3. Strict-Transport-Security. The final secu-
rity header we consider in our work is HTTP
Strict-Transport-Security (HSTS) [16]. Given
that all of us are using the web on a daily basis, including
for sensitive tasks like banking, it is imperative that
the connection between a client and server is secured
with TLS. Otherwise, a man-in-the-middle attacker could
easily eavesdrop on credentials being transmitted or
steal the authentication cookies sent by the browser the
browser to impersonate the victim. To overcome this,
browsers have long since implemented HSTS. This header,
when sent by the server through a TLS-enabled HTTPS
connection, instructs the browser not to visit the given host
through an insecure HTTP connection until the timeout of
max-age has been reached. HSTS can also be set with the
includesubdomains keyword, which ensures that all
subdomains of the given domain cannot be loaded through
an insecure connection.

2.3. JavaScript Inclusions

A modern site on the web no longer consists only of
code that is developed by the site’s operator. Instead, sites
rely on the inclusion of external scripts, be it for advertising,
map services, or general-purpose libraries such as jQuery.
The fact that any site can include scripts from anywhere else,
yet the code executes within the confines of the including
site, also means that a vulnerability within a third-party
script becomes the problem of the first party if they include
said script. Therefore, generally speaking, the inclusion of
additional code implies a larger attack surface. Prior work
has focused on various aspects of third-party script inclu-
sions. These range from using scripts to track users [3]

to how the inclusions interfere with CSP deployment to
the inclusion of known-vulnerable and sometimes duplicate
libraries [26, 42]. Moreover, in the context of online ads,
particularly, included scripts often include more scripts dy-
namically, which means a delegation of trust occurs. This
leaves first-party developers with little control over what
code is executed within their security boundaries.

2.4. PostMessage Issues

The web’s most fundamental security mechanism is the
Same-Origin Policy (SOP). It ensures that only documents
which share an origin (i.e., the protocol, host(name), and
port) can access each other through JavaScript. However, in
the context of a modern application, sites may load external
content, e.g., ads, in cross-origin frames. Notably, these
frames might need to exchange some data between them
and their parent page. Under the confines of the SOP, this
is impossible. To overcome this, the postMessage API was
introduced. It allows two documents loaded in the same
browser to interact with each other through a well-defined
message API. This way, they can exchange data without
allowing full access to each others’ content.

Browsers enable the confidentiality, integrity, and au-
thenticity of messages. Specifically, a sending document
can specify the target origin of another window to which
it posts data. If this window (e.g., an iframe) has been
navigated away from the target origin, the message will
not be delivered, thereby ensuring confidentiality. Similarly,
postMessages always go through the browser core, which
means that they cannot be manipulated by an attacker,
ensuring the integrity of the message. Finally, when handling
an incoming postMessage, the receiving JavaScript code
can check the origin property of the message event. It
contains the origin of the original sender and cannot be
forged by an adversary, which ensures authenticity. How-
ever, specifying the target origin and verifying the origin of
the incoming messages is optional and only ensures their
properties if implemented correctly.

Prior work has shown that while the overall state
of postMessage security has improved since the early
2010s [40], some sites still implement postMessage origin
checks insecurely [44]. If sites then incorporate incoming
messages as part of their business logic or, worse, pass
the content to XSS sinks such as eval or innerHTML,
the security provided by the SOP is effectively undermined.
Moreover, as shown by Steffens and Stock [44], other at-
tacks, such as using a vulnerable handler to relay a message,
thereby laundering the original message sender, or plain data
leakage by not setting the target origin, are possible.

3. Related Work

The following section reviews other studies concerning
meta questions of web studies, client-side vulnerability mea-
surements, login automation and security of login.
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3.1. Meta Questions on Web Security Measure-
ments

In the past years it became more and more clear that
reliable knowledge of the state of the security in the web can
only be achieved by large scale crawls and that the results
obtained by such crawls might be inaccurate. A variety of
studies studied how various features such a IP address (cloud
vs residential), geolocation, browser-configuration, choice of
crawling technology, or URL collection method (landing
page only vs internal pages) affect web measurement re-
sults [1, 2, 11, 21] and how crawlers compare to the human
browsing experience [50]. Most similar to our work Klein
et al. studied how giving consent to cookie banners changes
the number of third-party scripts and XSS exploits [25].

We instead compare how being logged-in influences
the results of web security measurements which is another
feature that was not yet studied by previous works. We left
all other parameters constant according to best practices.

3.2. Client-Side Vulnerability Measurements

Many researchers crawled the web to assess the real
world risks for client-side vulnerabilities such as CXSS [28,
30, 43], inconsistent security headers [6, 36], postMessage
issues [40, 44], vulnerable JavaScript libraries [26], DOM-
Clobbering [23], or prototype pollution [22].

All the above works used anonymous sessions that
opened websites under test in a fresh browser. We measure
a subset of the same vulnerabilities pre- and post-login to
be able to compare the security landscape of logged-in users
and how it is different from non-authenticated sessions.

3.3. Login Automation and Security of Login

Various researchers automated parts of the process for
studying logged-in users. From automatically finding lo-
gin forms [47], over automatically logging in using given
credentials [20] up to full automation of registration and
login [10, 13]. In addition, there exist several works on the
topic of SSO automation [18, 51]. Using these automated
tools or using a full manual process several researchers
studied the security of the login process itself or similar
(e.g., whether the cookies are set securely or whether the
sessions are correctly invalidated) [4, 13, 47].

Most of these works did not open-source their tools and
cannot be used by the community. We took inspiration from
their described procedures for our new open-source semi-
automatic login and registration tool chain account frame-
work. Instead of focusing on the security of the login process
itself, we ask whether there are systematic differences be-
tween the security landscape of authenticated sessions and
non-authenticated sessions and whether crawling the web
without being logged-in gives reasonably accurate results.

4. The Account Framework

Studying post-login issues is a challenging and labor-
intensive task. It requires accounts on various websites

Account &
Session DB

manual fallback

Website

Create accounts

Human Worker

Session

Store account and session data

Automatic Login and Login Oracle

Account Framework

Get Session

Experiment

Figure 1: Overview of the Account Framework.

and the ability to login to each account on each website.
Performing all these steps by hand for various experiments
is time-consuming and does not scale. Thus, we created a
semi-automatic framework that eases account registration
and manages login, validation, and session distribution.
We open-source the account framework to assist other re-
searchers studying problems on the web that require being
logged-in on websites1.

4.1. Semi-Automatic Framework

Figure 1 presents a general overview of the account
framework. Each deployment contains one central account
framework instance that manages all accounts and sessions.
Each consuming client, i.e., experiment, can request a ses-
sion, and if there is a valid session in the database, this
session (currently localstorage and cookies; the alternative
would be the complete browser profile) is returned and can
be used by the client until it is given back to the framework
or a configurable timeout is reached. The default time an
experiment can use a session is 24 hours, and sessions are
revalidated after being returned or after 12 hours. The back-
end ensures that no two clients receive a session belonging
to the same account simultaneously and that no experiment
receives a session for the same account (or website) twice.
The framework can handle arbitrary many identities, and
each identity can have accounts on many websites. For this
study, we only used one identity.

The account framework is responsible for managing the
account and session data. Experiments consume sessions,
and producers (either automated scripts or human workers)
create accounts and perform logins. For the scope of this
study, we implemented fully-automated login and validation
workers and password-manager-assisted scripts for regis-
tration, login, and validation that require a human in the
loop. Both the automated and human-in-the-loop workers
communicate with the account framework via an API and
can be replaced by others in the future.

1. Available at https://github.com/cispa/login-security-landscape
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The framework accepts any list of websites and any list
of identities as input. For each identity, the framework then
creates account creation tasks. For each successfully created
account, the framework creates login tasks; for each success-
ful login, it creates a session validation task. New validation
tasks are also scheduled after a session was used by an
experiment or after 12 hours (timeouts can be changed).
If a task fails, either the task is recreated for a different
worker type (e.g., if automated login fails, we fallback to a
manual login), a different task is created (if validation fails,
we create a new login task), or the account is marked as
broken (e.g., the account got blocked or the website is not
working anymore).

We also provide an optional helper script that uses an
automated browser to find login and registration forms on
a list of websites. It only creates account creation tasks
on websites where it found such forms and attaches the
discovered login and registration URLs to these tasks.

For our experiments, we run the framework on the same
machine as the experiments to minimize issues related to
risk-based authentication, e.g., if websites check the IP
address or the operating system to ensure the sessions have
not been stolen. For human-in-the-loop workers, we use
Xvfb and VNC to work on the same machine. However, in
general, the only requirement is that the workers can reach
the account framework’s API.

4.2. Assisted-Manual Registration

Our framework assists manual workers in making their
work smooth and fast and minimizing the time for the
human-in-the-loop. Initially, we start the assisted-manual
script once to set everything up correctly. We login into
Gmail (opened automatically and used for Email verification
and email-based login) and the Bitwarden browser extension
(password manager). In addition, we configure the extension
to autofill and never logout. Our script also adds all identities
of the account framework to Bitwarden.

To perform tasks, a human connects to the manual
worker script via VNC. A command-line program coor-
dinates the general process. If the user starts a task, the
program first adds the account information to use (such as
password and username) to Bitwarden. Then, it opens one
browser with the registration form of a website open (if our
optional script was not used and the framework does not
know the registration URL, it will open the landing page).
In addition, it opens another browser with our Gmail account
open. Ideally, Bitwarden auto-filled all required information,
and the human worker must only confirm. If not, the worker
has to fill in the remaining required information and perform
other steps to succeed in the registration, such as solving
captchas. After the worker has successfully finished the
task or failed to register an account, e.g., because account
creation requires payment, the worker closes the browser.
Following the close of the browser, the program asks the
user several questions about the outcome before the user has
to decide whether to continue with the next task or stop.
The program sends the registration results to the account

framework and schedules either an automatic login task or
saves the reason why no account could be created.

4.3. Automated Login and Validation Tasks

The automated workers that fetch login tasks and the
automatic helper script prepares account creation tasks use
a module to find login and registration forms. The module is
also responsible for filling out the login fields and logging in.
We use heuristics similar to prior work [13, 20] to achieve
this and use keyword lists with English and German words.
For example, HTML forms with at most one password field
or one or two active input fields are marked as potential login
forms. If these forms contain clickable elements with login
keywords, we mark them as login forms. These heuristics
allow us to detect even involved multi-step login forms.
Automated workers solving login tasks fill the login forms’
input fields with the appropriate credentials. They use the
input types, placeholders, ids, and labels of input elements
to derive the correct submission. Then, they submit the form
by hovering and clicking submit-like buttons. New tasks are
then scheduled for automatic verification or manual login
based on the outcome. Finally, the resulting session is saved
in the account framework (i.e., LocalStorage and cookies).

The automated workers that fetch verification tasks use
a module to verify if an account is logged-in. Again we
use heuristics similar to Drakonakis et al. [13] and Jonker
et al. [20]. Specifically, we check if account indicators, such
as username or email, are present on the landing page of
the login state but missing from the landing page of an
unauthenticated fresh browser. If that fails, we check if the
URL with the login form is accessible or that the login form
is missing in the login state.

The automated login and verification can fail due to
various reasons: captchas, complex custom login procedures,
blocked accounts, and similar. Thus, we have a manual
fallback option where failed tasks get rescheduled for man-
ual workers. However, we did not use this option for the
scope of this study. The automatic verification oracle could
produce false positives. However, false positives are unlikely
as the oracle checks for account credentials, which we
hand-picked during the registration process to be sufficiently
unique to ensure they do not randomly occur on a site.

5. Measuring Security Relevant Differences

In the following, we describe how we measure various
security indicators pre- and post-login and compare them,
including security headers, JavaScript usage (e.g., vulnerable
libraries and amount of third-party inclusions), client-side
XSS, and postMessage usage.

5.1. Client-Side XSS

For client-side XSS, we compared the prevalence of
potentially vulnerable sink invocations and actual vulnerable
client-side XSS present in logged-in and non-login states.
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To collect taint reports, we used the Foxhound browser
engine [39], a fork of Firefox with taint tracking capabilities.
We used the exploit generator by Steffens et al. [43] to
produce reflected and persistent XSS exploits for detected
tainted sink invocations in either state. We then validated
each generated exploit during crawling. For each verified
exploit in one state, we afterward verified it in the respective
other state to understand whether or not those vulnerabilities
are present in both states.

We collected the detected taint flows for each visited
page and fed them to the exploit generator. We chose the
Foxhound browser [39] as the taint tracking method since
the browser engine provides support for recent JavaScript
language features not present in the Chromium taint tracker
used by Steffens et al. [43]. In our setup, we used Playwright
version 1.33 with the Foxhound browser commit 2916e01,
which is a fork of Firefox 109. As the exploit generator
was built for the Chromium taint tracker, we converted the
taint reports from Foxhound to match the format of the
exploit generator. We captured the exploit generator output
and subsequently verified each generated exploit by visiting
the respective page using the exploit data. We note that
Foxhound does not support iframe.srcdoc detection,
and due to an oversight, no exploits were generated for
script.text. However, since we leverage the same en-
gine in both states, the impact of the issue is limited, given
our comparative analysis.

To verify the generated exploits, we proceeded in the
following way:

• For reflected exploits, we visited each generated URL
containing the payload and checked whether it was
executed. This method aligns with prior works [28, 30].

• For persistent exploits, we first visited the vulnera-
ble URL and waited until it was loaded. We then
waited 3 seconds and subsequently modified the stor-
age with the output of the exploit generator. Here,
we leverage the same logic as Steffens et al. [43].
Afterward, we refreshed the page and checked whether
our payload code was executed. We distinguished the
storage types localStorage, sessionStorage,
and document.cookie, in which we replaced the
relevant key accordingly. For exploits that used the
script.src sink, we included an externally hosted
script containing our payload. The URL that pointed
towards that script was included in the exploit genera-
tion and injected into the exploit data by the generator.

For both verification tasks, we waited for 10 seconds after
page load to determine whether the payload executed.

5.2. Security Headers

Many websites use security headers to protect them-
selves against various security issues. However, these head-
ers are only effective if used securely and consistently.
For the scope of this paper, we focus on the following
headers on main page responses: Strict-Transport
-Security (HSTS), X-Frame-Options (XFO), and

Content-Security-Policy (CSP). To evaluate and
compare the security of sites and responses, we apply the
definitions of consistency and equivalence relations for the
semantics of security headers outlined by Roth et al. [36].
However, we modified the definition of equivalence relation
for CSP TLS to ignore ’block-all-mixed-content’ as modern
browsers ignore it, and mixed content is blocked by default.
In addition, we modified the X-Frame-Options parsing code
to reflect its recent specification in the HTML standard [17],
which results in blocking all framing if several distinct
values are specified.

Specifically, we consider a header to be secure if it is
present, does not contain syntax errors, and:

• for X-Frame-Options either framing is denied, or only
same-origin framing is allowed.

• HSTS has a positive max-age value.
• Content Security Policy (XSS) employs a safe CSP,

i.e., it is not trivially bypassable, e.g., by including *
or ’unsafe-inline’ without nonces or hashes.

• Content Security Policy (framing) either only the own
origin is allowed, no framing is allowed, or framing is
constrained (not containing * or https:).

• Content Security Policy (TLS) the upgrade-insecure-
requests directive has to be present.

To collect headers, our crawler uses Playwright to regis-
ter a listener on each page to capture all request and response
pairs. We analyze the responses to top-level documents as
all considered headers have a defined semantics for such
responses and it is inline with Roth et al. [36]. If a page
redirects, we only consider the final document response and
only if it is same-site in respect to the originally visited site.
Thus, if domain.com redirects to domain.us because of
a geo-specific version, we do not consider the results.

As Roth et al. [36] discussed, sites may exhibit non-
deterministic inconsistencies in the headers. The authors
noted that this may be due to different origin servers or other
types of misconfigurations. We visit each URL five times
to avoid drawing incorrect conclusions from these potential
intra-test inconsistencies. In line with Roth et al. [36], we
compare the semantic equivalence of the received headers
to ignore syntactic changes in headers that do not result
in different security for users, such as different casing in
XFO headers. If all five repetitions of a URL visit have the
same security level, we count it as consistent. Otherwise, we
count it as inconsistent. If a URL shows inconsistent security
headers, we discard it from the comparative analysis to avoid
comparing partially random values with each other.

We also compare the security of responses between the
two states, logged-in and non-logged-in, to evaluate whether
these user groups receive headers that differ in their security.
For this analysis, we could only compare URLs collected
in both the logged-in and logged-out crawl. In addition, we
only consider URLs that were intra-test consistent in both
states. We consider a URL intra-test consistent if it had the
same semantic value for all five considered properties for
all five repetitions. We then compare the semantic values of
each property to see which state has better security for this
URL or if both states are the same.
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5.3. JavaScript Inclusions

For JavaScript inclusions, we inject a modified version of
the script used by Steffens et al. [42] into every visited URL
to hook APIs related to script execution. Additionally, we
use Playwright and the Chrome DevTools Protocol (CDP)
to register handlers for events like Debugger.scriptParsed.
Whenever a hooked API which may lead to parsing and
executing new JavaScript code snippets is called, all those
snippets are collected and reported alongside a stack trace.

Every time JavaScript code is parsed, the Debug-
ger.scriptParsed handler is executed, and the parsed script
can be attributed to the corresponding API call. We divide
script parser invocations into 5 categories. First, there are
two ways of statically adding JavaScript: inclusion: the ini-
tially served HTML contained the script with a src attribute,
and inline: The initially served HTML contained the script
without a src attribute. Moreover, code can be dynamically
added at runtime through: (1) dynamic inclusion, i.e., a
script tag with src attribute was programmatically created
and appended to the DOM, (2) dynamic inline, where the
DOM was programmatically modified, and a new script was
parsed. Last, there is eval if the script was parsed due to an
invocation of eval. As Eval cannot be hooked, we indirectly
classify scripts as eval if they do not match any other criteria.

To identify third parties, we collect the source URL for
each script, if available, and compare it with the site of the
originally visited URL. Additionally, we use retirejs [33] to
identify used libraries and disconnect [12] to identify known
tracking entities..

5.4. PostMessages

We integrated the open-sourced code from PMForce
published by Steffens and Stock [44] and updated their code
to work with Playwright version 1.33 instead of Puppeteer,
while preserving functionality. For each page we visited, we
injected their automated analysis framework that leverages
force execution and taint tracking for analyzing detected
handlers. The SAT timeout for queries to the constraint
solver was set to 30 seconds. Each visited URL ran for
at least 10 seconds, and afterward, the crawler awaited the
termination of the verification of each generated exploit.
PMForce captured all parsed handlers and generated exploit
candidates, which were immediately verified during the
same crawl.

6. Experimental Setting

The aim of this study is to evaluate differences in secu-
rity indicators between authenticated and non-authenticated
browsers and to estimate how accurate of an approximation
large-scale web crawls with non-authenticated browsers are
for the browsing realities of everyday web users. In the rest
of the paper, we refer to the authenticated, i.e., logged-in,
state as Sauth and to the unauthenticated browser state as
Snoauth. In theory, one would like to compare as many sites
as possible, however, due to the manual nature of account

registration, we had to limit the scope of the experiments.
To still achieve the goal of best approximating real web
browsing behavior, we decided to test popular websites as
they are likely to have an account system, and users spent
a disproportionally large amount of time on them [37]. To
select popular sites, we started with Tranco [27] (up to rank
445) and switched to the CrUX dataset [15] (Top 5K) which
better represents web popularity [38]. Due to an overlap
between these lists and CrUX using origins instead of sites,
our initial dataset consists of 4,485 unique sites. On these
we automatically extracted more than 900 sites where we
detected a login and a registration form. On these sites, we
manually created over 400 accounts during a time period
of several months in 2022 and 2023. On the other sites we
encountered the following issues:

• Infinite captcha loops, timeouts, bot or country block
pages, and broken registration processes: 177

• Payment, phone number, or similar required: 170
• False positives in registration form detection or only

SSO login (mainly in an early iteration): 88
• Beyond those, we encountered duplicate domains (.com

and .country versions use the same accounts), language
issues, or failed delivery for activation emails.

For this study, we used around 200 sites where our auto-
mated login continuously succeeded during the span of the
experiments. To evaluate the reasons why the automatic tool
failed on the other sites and to improve it, we manually spot
checked them. The three main reasons were: login requires
solving a captcha, login requires clicking a link in a mail,
and the account was blocked.

The four experiments ran independently on one of three
identical crawling machines. Each of the four experiments
requested sessions from the account framework and, after
receiving a session, crawled the site twice independently
in parallel, once with the received session (Sauth) and
once with a fresh browsing profile (Snoauth), to be able
to compare results one would receive if one would either
crawl with being logged-in or not. As real users interact
with websites and not only visit the landing page, each crawl
was configured to crawl up to 1,000 same-site URLs with a
timeout of 24 hours. Our crawlers use Playwright v1.33 in
its default configuration. The crawlers visit the current URL,
wait until the load event fires (max 30 seconds), wait for
another five seconds, and execute all modules. The collect
links module uses page.locator('a[href]') and we
add all same-site links up to a maximum depth of two. In the
case of the authenticated crawls, we excluded common lo-
gout URLs to avoid accidental logout during the experiment.
We note that the collected same-site URLs might redirect
cross-site and such responses are later excluded from the
analysis.

7. Results

In this section, we present the results of our study. We
start with general insights from our dataset applicable to all
experiments. Then, we present the results of each of the four
experiments separately.
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7.1. General Crawling Statistics

Each experiment ran in the same timespan of two weeks
in July 2023. The number of sites each experiment processed
was between 203 and 212. The experiments processed differ-
ent amounts of sites because some accounts stopped working
or the automated login started to fail during these two weeks.
We decided to analyze the 200 sites processed by all four
experiments. Two sites had no additional URLs discovered
for all experiments, and further investigation on these sites
showed that they only rely on buttons instead of links.
On the other sites, no same-site URLs could be collected
in at least one state and experiment, and we decided to
recrawl these once in the corresponding experiments. This
might have been caused by a temporal issue, such as a
failed loading of the landing page. On average, 12 sites per
experiment were recrawled as they had not collected any
URLs in at least one state, and after recrawling, an average
of 7.5 had at least one state with no collected URLs left.

The average and median Tranco (ID N76GW from July
4, 2023) rank of the 200 considered sites is 15,137 and 3,038
respectively; only one site is not in the Tranco list. 51 sites
are in the highest bucket (top 1,000) of CrUX (April 2023),
with the majority (110) in the second bucket (top 5,000) and
only 24 and 15 in lower buckets (10,000 and 50,000).

Each experiment ran in pairs, i.e., each site was visited
by one experiment in parallel in both states. On average, the
time spent to crawl one site ranged from 3h19m (Javascript
inclusion experiment) to 16h27m (Security header experi-
ment). The average time of the two states over all exper-
iments was 8h44m for Snoauth and 8h31m for Sauth. A
total of 52 site-state pairs ran into the 24-hour limit and
got terminated early. 25 of these belong to Sauth and 27 to
Snoauth.

On average, 840 URLs were collected in Snoauth and
820 URLs in Sauth. An average of 809 and 764 were
crawled successfully. The numbers for collected/crawled
URLs range from (771/614) for the CXSS experiment to
(890/876) for the Javascript inclusion experiment. We do
not exclude sites that did not collect any additional same-
site URLs to visit after the landing page for at least one state
as this might be a valid result, e.g., authenticated users are
automatically redirected to a user portal with only buttons
and no links. For a small number of sites, we did not collect
any same-site data for at least one state in some experiments
as they redirected to a non-same-site URL, or the initial page
did not load successfully. Thus, we exclude such sites from
the experiment analysis, and each experiment has between
195 to 198 sites to analyze.

7.2. Client-Side XSS

The key question to ask for the detection of client-
side XSS is to what extent lacking an authenticated state
reduces the number of sites found to be vulnerable. This
may stem from some URLs not being accessible without
login or the crawler simply not being able to find a particular
URL that is found in the authenticated state. Additionally,

TABLE 1: Sites with at least one direct CXSS sink.

Sink Snoauth Sauth Total

innerHTML 145 153 164
script.src 152 149 163
eval 68 79 81
script.text 9 12 13
document.write 9 6 9
outerHTML 3 3 4
setTimeout 1 1 1

prior work has investigated the overall number [28, 30] and
complexity [45] of dataflows as an indicator of potential
for XSS flaws. A dataflow is information coming from
one source ending up in one sink invocation. Sink invo-
cations such as document.write(location.href +
document.cookie + location.href) can use sev-
eral sources and even the same source several times, thus we
decided to report the number of sink invocations. Therefore,
we also investigate if the number of sink invocations or the
distribution across sinks changes between the two states.

We collected a total of 38,105,442 sink invocations,
22,294,095 for Sauth and 15,811,347 for Snoauth. Out of
all sink invocations 8,781,897 filter at least part of the
source (any of hasEscaping, hasEncodigURI, hasEncodin-
gURIComponent is true for at least one entry in the sink
invocation source list), out of these 6,358,454 filter all
source entries, the remaining 29,323,545 sink invocations
are Plain and do not use any encoding or filtering. Table 1
shows the number of sites with at least one sink invocation
that could result in XSS for both states. Table 2 shows the
sink invocations categorized by sink invocation group. The
table shows both the number of sites with at least one such
sink invocation and the total number of sink invocations.

For most sinks both the number of unique sites and
the number of total sink invocations is higher for Sauth.
Potential CXSS invocations are all invocations to the sinks
shown in Table 1 and for this group more invocations exist
for Snoauth. The generator row shows all sink invocations
that use a supported sink and are tainted by a source that is
supported by the exploit generator. Here more invocations
exist for Sauth again, the reason is that nearly half of the po-
tential CXSS flows for Snoauth used the XHR.response
source that is not supported by the exploit generator. The
last row exploitable shows all sites and sink invocations that
resulted in successful exploits.

Table 3 presents all generated exploits. In total we
discovered seven unique vulnerable sites. Six are vulnerable

TABLE 2: Sites with at least one sink invocation and
absolute count of sink invocation.

Sites Sink Invocations
Snoauth Sauth Total Snoauth Sauth

Any 193 191 195 15,811,347 22,294,095
Plain 192 190 194 12,475,288 16,848,257
Potential CXSS 158 162 172 774,457 667,804
Generator 140 145 159 336,492 492,504
Exploitable 4 6 7 418 2,330
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TABLE 3: Sites with CXSS exploits.

Exploits Sites
Snoauth Sauth Total Snoauth Sauth Total

PCXSS 420 2,465 2,885 3 5 6
RCXSS 2 18 20 1 1 1

Total 422 2,483 2,905 4 6 7

in Sauth, and four in Snoauth, three sites are affected in both
states. Six of the vulnerable sites are affected by a persistent
flaw and one site is affected by a reflected client-side XSS.
The vulnerable sink is always innerHTML.

One of the main questions is whether the discovered
vulnerabilities only were not found in the respective other
state or whether the vulnerabilities do not exist in the other
state. To answer this question, we ran every confirmed
exploit in the respective other state. 66% of the exploits
found in Sauth could be exploited in the Snoauth crawler,
whereas 91% of the exploits found in Snoauth could be
exploited in the Sauth crawler. Both states could confirm
exploits for 3 sites. Out of these, 2 also had working exploits
in their respective other state in the original crawl. One
site that also had exploits in both states could not confirm
these in the respective other states. Taking all information
together, 2 sites were only ever exploitable in Sauth whereas
0 sites were only ever exploitable in Snoauth.

Although CXSS exploits were rare on the studied sites,
which shows that simple attacks are getting harder
on the web, crawling from a logged-in perspective
provides us with vulnerable URLs which could not
be reached otherwise. This means that studies from
an unauthenticated perspective [28, 30, 43, 45] likely
underreport the prevalence of XSS vulnerabilities. On
the other hand, only looking at a logged-in context
also misses sites that have potential dangerous sink
invocations.

7.3. Security Headers

We now outline the results of our security header analy-
sis regarding observed usage, consistency within each state,
and the comparative analysis for URLs visited in both states.

7.3.1. Usage and Security. In total, we collected 1.7 million
top-level responses. To ensure the reliability of the results,
we filtered out the responses with rendering or network
errors. Additionally, we removed the responses that redi-
rect to a different site. Ultimately, we analyzed over 1.5
million top-level responses, including 797k Strict-Transport-
Security headers, 871k X-Frame-Options headers, and 525k
Content-Security-Policy headers.

We analyzed all responses, assessing each considered
header’s presence, security, and absence. Then, we grouped
the responses by site and state, as shown in Table 4. This ap-
proach gives us first impressions of the potential differences
between the headers in both states.

TABLE 4: Sites that used a header securely, insecurely, or
did not specify it at least once.

Header Using Secure Insecure Missing

CSP XSS mitigation 57 28 44 190
- only Snoauth 4 4 3 5
- only Sauth 2 5 1 1

CSP framing control 84 83 2 192
- only Snoauth 9 9 0 4
- only Sauth 2 2 0 0

CSP TLS enforcement 48 48 0 194
- only Snoauth 2 2 0 4
- only Sauth 0 0 0 0

Strict-Transport-Security 149 147 8 174
- only Snoauth 7 6 2 11
- only Sauth 0 0 0 3

X-Frame-Options 167 164 9 178
- only Snoauth 5 5 1 10
- only Sauth 2 2 2 2

Table 4 shows the site-specific usage of response head-
ers. For the examined headers, the X-Frame-Options header
appears on most pages, with 167 sites using it at least once.
It is also the most frequently used header, appearing on
average in 56% of responses. The Content-Security-Policy
header is the least used. On average, less than 12% of
the responses had a specified CSP for mitigating cross-site
scripting attacks. While CSP for XSS mitigation is the least
used, it is also the most frequently misused header, with 44
sites specifying a non-safe policy.

Our analysis reveals that the header usage and security
are generally similar between Sauth and Snoauth. However,
some sites employ security headers differently. For instance,
we observed seven sites that specified the Strict-Transport-
Security in Snoauth exclusively, while others deployed the
X-Frame-Options header in Sauth only. Despite these dif-
ferences, we observed no significant changes in the average
frequency of deploying a header on the pages of a site
between the two states. While there are some differences
between Sauth and Snoauth, they largely depend on the
implementation of the specific server, and most sites show
minimal disparities in the usage and security of headers
between the two states. Notably, all headers are frequently
absent on at least one page per site, implying inconsistent
deployment. We note that more sites with missing headers
are contained in the unauthenticated dataset, implying that
to study the absence of headers, this is a better choice.

7.3.2. Intra-State Consistency. Roth et al. studied header
inconsistencies, which can be attributed to deterministic and
non-deterministic factors [36]. To validate the consistency
of our data and eliminate potential influence from non-
deterministic factors, we examine the intra-consistency of
the headers. We group the responses by site, visited URL,
and state and compare the headers’ semantics using equiva-
lence relations. Each equivalence class is assigned a numeric
value, such that higher values indicate better security. We
consider a header intra-consistent for a given URL if all five
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TABLE 5: Sites with intra-inconsistent security headers.

Inconsistent Inconsistent
Header (w/o missing)

CSP XSS mitigation 6 0
- only Snoauth 2 0
- only Sauth 1 0

CSP framing control 23 0
- only Snoauth 2 0
- only Sauth 9 0

CSP TLS enforcement 11 0
- only Snoauth 1 0
- only Sauth 4 0

Strict-Transport-Security 61 4
- only Snoauth 16 0
- only Sauth 11 2

X-Frame-Options 55 1
- only Snoauth 8 0
- only Sauth 15 0

visits result in the same equivalence class for the header. We
present an overview of our findings in Table 5.

Many sites exhibited an intra-inconsistent header on at
least one URL. For instance, 61 sites had an inconsistent
HSTS header. In Table 5, the last column examines the
header inconsistencies, ignoring differences in equivalence
classes caused by missing headers. The results highlight
that the majority of inconsistencies are attributed to missing
headers and aligns with the results of Roth et al. [36].
Notably, the frequency of inconsistent headers is low - our
findings suggest that over 99% of URLs had consistent
headers. The high level of consistency indicates that our
results remain unaffected by non-deterministic factors.

Similarly to the usage and security of headers, our
analysis indicates no significant differences in the intra-
consistency between authenticated and unauthenticated
browsers. For instance, while the HSTS had more inconsis-
tent headers in Snoauth, the XFO and CSP headers had more
inconsistencies in Sauth. However, these inconsistencies are
attributed to missing headers, and there is no discernible
pattern of one state having more inconsistencies.

7.3.3. Inter-State Comparison. We compare the security of
the two states by following the semantic relations of Roth
et al. We exclude the intra-inconsistent responses for both
states, group the remaining responses by the visited URL,
and compare the security for each header. We subtract
the headers’ equivalence class to get a numeric value that
indicates which state has a more secure header.

Table 6 presents an overview of the number of sites per
state with a header with better security on at least one of
their URLs. We observe that only a handful of sites exhibit
different levels of security on the same URL. In total, 24
sites have at least one page with strictly better security for
Sauth than Snoauth, and 24 have it vice-versa. The biggest
contributors are XFO and HSTS for both classes. Notably,
six sites are better in terms of security in both states at least
once. This suggests a hidden intra-test inconsistency rather

TABLE 6: Sites with a better header security in either state.

Better security w/o missing
Header Snoauth Sauth Both Snoauth Sauth

CSP XSS mitigation 3 2 0 2 0
CSP framing control 8 4 2 1 0
Strict-Transport-Security 14 13 5 4 2
X-Frame-Options 13 16 2 1 2

Any 24 24 6 4 6

than an intentional difference between the states on different
URLs. Again, missing headers are the most prevalent cause,
as highlighted by the last two columns. Moreover, only 422
out of 46,992 (0.9%) URL pairs are affected.

Overall, our findings for security headers suggest no
substantial differences in the adoption and potential
misconfigurations between the two states. As prior
work [36] noted around 8% of start pages do not
deliver intra-test consistent results, the impact of ran-
domness on serve seems much higher than any lack of
authentication might have on the experiment results.

7.4. JavaScript Inclusions

In total, our crawlers parsed 42,437,161 scripts. Of
these, 22,607,693 were observed in Sauth and 19,829,468
in Snoauth, totalling 1,719,724 hash unique scripts. In the
following, we dive into the different types of scripts being
parsed, the number of libraries we found, and how the
findings impact a site’s ability to deploy CSP.

7.4.1. Parsed JavaScript and Library Usage. To analyze
the impact of login state on the observed JavaScript and
potential attack surface, we look at the amount of individual
scripts and parser invocations across Sauth and Snoauth.
In the following, we refer to JavaScript parser invocations
as script parsings. Additionally, we compare the usage of
known vulnerable libraries.

Table 7 shows all script parsings and unique scripts
grouped by the two states and by the different script parsing
types. Overall, the number of unique scripts in Sauth is 4.9%
greater than in Snoauth. Note that the total unique scripts
are not the sum of the two states since some scripts occurred
in both states. It is worth noting, though, that approximately
10% of all unique scripts were only observed in one or the
other state. All 198 sites contained more unique scripts in
Sauth compared to Snoauth.

Figure 2 shows the density for the relative differences
between the two states over the sites for each of the five
script parsing types. A value of -1 means only the Snoauth

had script parsings, a value of 0 means both states had the
same number of script parsings, and a value of +1 means
only the Sauth state had script parsings. The highest density
is around 0, showing that most sites have a similar amount
of script invocations for both states. However, we can see
that the three types Dynamic Inclusion, Dynamic Inline, and
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Figure 2: KDE of relative differences for script parsings.
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eval are shifted to the right. For these types 66, 53 and 60
sites respectively have more than 20% more invocations for
Sauth. The other two types are more closely centered around
zero.

The number of unique scripts identified as libraries in
Sauth (1,864) is 51.05% greater than in Snoauth (1,234).
In our experiment, 1,535 of the scripts containing libraries
in Sauth had at least one known vulnerability while only
553 had a known vulnerability in Snoauth. However, this
difference is mainly caused by one outlier, cnbc.com,
which has 986 unique scripts containing vulnerable libraries
in Sauth and only 4 for Snoauth. Even though these scripts
only differ slightly, they are classified as unique scripts since
they have different hashes. The number of websites that
include at least one vulnerable library on at least one crawled
URL is similar (143 Sauth, 145 Snoauth).

TABLE 7: Scripts parsings grouped by type and state.

Type Script Parsings Unique scripts

Total 42,437,161 1,719,724
- Snoauth 19,829,468 934,545
- Sauth 22,607,693 980,569

Inline 4,074,246 647,133
- Snoauth 2,116,945 413,988
- Sauth 1,957,301 301,572

Dynamic Inline 1,140,202 73,077
- Snoauth 484,319 34,203
- Sauth 655,883 44,057

Inclusion 6,216,870 133,060
- Snoauth 2,624,347 73,912
- Sauth 3,592,523 79,543

Dynamic Inclusion 5,753,260 455,301
- Snoauth 2,408,434 189,677
- Sauth 3,344,826 292,294

Eval 25,252,583 414,011
- Snoauth 12,195,423 224,317
- Sauth 13,057,160 265,112

TABLE 8: Sites that include at least one script of the given
type on at least on crawled URL.

Dynamic Dynamic
Inline Inline Eval Inclusion Inclusion

Total 198 158 179 198 198
- Snoauth 197 147 175 197 197
- Sauth 197 150 175 198 197

TABLE 9: Number of unique third-party scripts, third par-
ties, and known trackers.

Unique Third- Unique Third Unique Average Third Average
Party Scripts Parties Trackers Parties per Site Trackers per Site

Total 507,948 1,231 219 25.93 9.54
- Snoauth 216,952 1,053 181 19.90 6.52
- Sauth 322,525 1,146 209 23.68 8.88

7.4.2. Impact on CSP and Privacy Studies. To analyze
the impact of login state on the ability to deploy a secure
and concise CSP, we compare the JavaScript usage in Sauth

and Snoauth. As described in Section 5.3, JavaScript parser
invocations are grouped into categories. Websites with In-
line or Dynamic Inline have to rely on unsafe-inline or
use nonces, which are non-trivial for third parties to use.
Notably, they could use strict-dynamic, yet as shown
by Steffens et al. [42], many third parties added event
handlers which cannot be enabled through nonces, which
in turn is a prerequisite for strict-dynamic. A website
containing scripts of the category eval must deploy CSP
with the unsafe-eval directive. As depicted by Table 8, there
are no significant differences between Sauth and Snoauth

regarding this unsafe practices. However, it is worth noting
that crawling in one or the other state would miss up to 11
sites (for dynamic inline), i.e., potentially have results that
are off by 5%.

Similarly, websites that use Inclusion or Dynamic Inclu-
sion scripts must allow all third parties in the script-src. Ta-
ble 9 shows the amount of unique third-party scripts and the
number of third-parties grouped by the two states. In addi-
tion, it shows the number of known tracking entities defined
by the Disconnect Tracker Protection List [12]. Overall, the
number of third parties in Sauth is 8.83% greater than in
Snoauth. Similarly, the number of unique third-party scripts
in Sauth is 48.66% greater than in Snoauth. A total of 102
sites have more unique third parties in Sauth, whereas only
46 have more in Snoauth. On average, sites have 23.68 third
parties in Sauth and only 19.90 in Snoauth. Note that the
combined average is higher, as each site may have third-
party inclusions which happen only in one state, therefore
the union of included third parties is higher than the two
averages. Notably, our findings imply that works that auto-
matically curate CSPs or study roadblocks [14, 31, 42] might
be significantly off for allowlist requirements. Moreover,
works that aim to understand third-party tracking [7, 29,
34] may suffer from similar limitations as we discovered
15.47% more unique tracking entities in Sauth.
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TABLE 10: Number of postMessage handlers.

State Handlers Hash-Unique AST-Unique Unique Sites

Snoauth 23,616 5,736 493 138
Sauth 49,795 6,835 899 174

Total 73,411 12,280 1,133 183

The vast majority of sites have more scripts, third
parties, and trackers when crawled in Sauth com-
pared to Snoauth. Thus, information gathered about
JavaScript usage while crawling unauthenticated does
not automatically and fully translate to authenticated
users. The effect is limited when judging insecure
practices like unsafe-inline. However, both CSP
allowlists [5, 42, 49] and tracking research [7, 29, 34]
may be off.

7.5. PostMessages

For the postMessage analysis we first focus on the
general usage in both states. Then, we look at potentially
vulnerable and verified exploitable postMessage handlers.

Table 10 provides an overview of the collected PostMes-
sage handlers. Our crawlers collected a total of 73,411
handlers. Notably, more than twice as many (49,795 vs.
23,616) were detected in Sauth. However, sites may re-use
the same handler repeatedly, which is shown by the fact
that considering hash-unique handlers, 5,736 handlers were
detected in Snoauth and 6,835 occurred in Sauth. Moreover,
even hash uniqueness is not necessarily a criterion for
unique handlers. This is because they might merely contain a
timestamp or variable which points to the current URL, i.e.,
although their code is effectively the same, the hash differs.
We, therefore, computed the AST hash of each handler. To
do this, we parse the handler code with esprima and only
hash the resulting tree without values. Considering these
AST-unique handlers, the difference is even larger with 493
to 899 handlers, respectively. For 83 hash-unique handlers,
we could not determine an AST-hash as esprima failed to
parse them. We note that in total, 183 sites registered a
postMessage handler, and merely visiting sites in one or the
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Figure 3: Usage of hash-equivalent postMessage handlers.

TABLE 11: Sites with postMessage exploit candidates.

Exploit Candidates Candidate Sites Vulnerable Sites
Sink Snoauth Sauth Snoauth Sauth Snoauth Sauth

document.cookie 1 2 1 2 0 0
document.write 0 2 0 1 0 0
innerHTML 2 4 1 1 0 0
Storage 0 6 0 3 0 1

Total 3 14 2 6 0 1

other state would not have allowed us to capture all the
handlers we did.

In terms of finding potential vulnerabilities (e.g., XSS or
state manipulation), it is important to understand how many
handlers are only included within one state. Figure 3 shows a
histogram of how many AST-unique handlers were included
how often for both states. Most AST-unique handlers only
occurred in one state on one site. However, 332 handlers
occurred on multiple sites and 259 handlers occurred in both
states. 118 handlers occurred on two sites and one handler
was found on a total of 117 distinct sites. Out of the handlers
that occurred multiple times, 172 occurred exactly twice,
others however appeared up to 20,000 times. These mostly
relate to third-party code, e.g., Google Syndication.

Most of the discovered handlers are harmless and do
not possess any flow to a dangerous sink. Table 11 shows
all exploit candidates generated by our exploit generator. In
the end, only two exploits worked, both of which affected
a single site in the authenticated state.

For postMessages, our analysis highlights that the
number of hash- and AST-unique handlers increases in
the authenticated state. That is, any study on postMes-
sages usage should attempt to perform a login to cover
as many handlers as possible. However, nine sites
were only discovered in Snoauth. Moreover, given
the findings of both Steffens and Stock [44] and us,
postMessage vulnerabilities are fortunately very rare
on the modern web. Therefore, the implications of
the authentication state are limited when it comes to
finding exploitable handlers.

8. Discussion

Here we discuss our main insights, list limitations, and
ethical considerations, and recommend actions future studies
using web crawling in the area of security should take.

8.1. Main Insights

Crawling in an authenticated state is generally similar
to crawling with a fresh unauthenticated browser. However,
some sites redirect or serve special user portals to logged-in
users with no or almost no links and instead rely on buttons
and other HTML elements to provide their functionality.
Thus, we observed fewer average collected URLs per site in
Sauth. In addition, one has to be careful to avoid logging out
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accidentally, and the challenging task of obtaining a valid
user session to begin the crawl has to be solved.

In general, the differences between authenticated and
non-authenticated users can matter but do not necessarily
have to. In short, how well the results of non-authenticated
users generalize to authenticated users highly depends on
the subject of study. For most of our experiments, we saw
moderate to significant increased values for authenticated
users. For example, 14.01% higher number of script pars-
ings, 35.05% higher number of plain sink invocations, and
82.35% higher number of observed AST-unique postMes-
sage handlers for Sauth. At the same time, the general
usage and security of security headers were mostly the same.
Similarly, the intra-test consistency was nearly identical for
both states, and the inter-test comparison could also not
identify one state to be more secure in their usage of security
headers. We hypothesize that one of the reasons for the
almost nonexistent differences in security headers is that
most sites set these headers application-independent and
origin (or site)-wide at a reverse proxy instead of setting
these headers within the application.

In addition, while we have seen some clear trends for
certain security indicators, it is not the case that the authen-
ticated state is always better or worse in terms of security of
the observed entity. Instead, the security indicators can differ
for each site, and outliers exist in both directions. Thus, to
report clear trends and not only single outlying sites, one
must study a large enough set of sites, investigate outliers,
and correctly accommodate them in the used metrics. In
general, however, we observed that the authenticated state
has a larger observable attack surface and more vulnerabil-
ities. We explain this by the fact that authenticated users
have access to more functionality on a site while usually
not losing access to the parts of a site accessible to non-
authenticated users.

8.2. Limitations

As with any other study, ours comes with limitations.
Foremost, the selection of sites might not be suitable to gen-
eralize to the whole web. Due to the challenging and labor-
intensive task of creating accounts, we could only study 200
sites. We choose popular websites from both Tranco and
CrUX as the basis of site selection. In addition, we only
included sites where our automated tool could find a login
and registration form and where automatic login succeeded.
Thus, our study is affected by selection and survivorship
bias. Still, we think the set of sites is meaningful as it
portrays a wide range of popular sites on which users spend
much time (median Tranco Rank of 3,038).

Secondly, the crawling of each site is limited (e.g.,
we only test a site for a maximum of 1000 URLs or 24
hours and did not attempt to visit intentionally invalid URLs
which may have different security configurations [48]), and
random effects might affect both states differently. We tried
to minimize all such errors by starting the crawl in both
states for each site simultaneously and on the same machine.
However, as each state crawled individually, they might have

diverged from one another during the crawl. In addition,
while we avoided logout URLs, we cannot guarantee that
all crawls that started with an authenticated session finished
the crawl authenticated.

Thirdly, the number of security-relevant issues and indi-
cators we could study in this work is limited, and our results
might not transfer to other subjects of study. For example,
we could not study any server-side security issues.

8.3. Ethical Considerations

For this study, we created accounts on various sites and
open-source our toolchain to ease the process of performing
web security studies with logged-in accounts. The first
question is about the harm done by our experiment, and
the second is about the potential harm of releasing our
toolchain. We only created one account per site, and all
tested sites were popular. In all our attacks and experiments,
we only investigated our own accounts and only studied
client-side security issues. Thus no other users of the sites
were influenced by our study. For the second question, we
think the potential benefit for researchers is higher than
the potential for abuse. The account creation process still
requires a human-in-the-loop, and similar tools already exist
for attackers.

Our analysis uncovered vulnerabilities in real-world sites
that may affect many users. Even though the flaws were
discovered with publicly available tools, we notified the
affected site operators to ensure these cannot be exploited.

8.4. Recommendations for Future Studies

We recommend each web security study to reflect
on whether a difference between authenticated and non-
authenticated sessions could be important for their outcome
and their interpretation thereof. While we have seen a trend
of a larger attack surface and more vulnerabilities in three
of the four experiments performed for this study, we cannot
know whether this generalizes to other study subjects. In
addition, we discovered unique observations in the non-
authenticated state for all our measurements, meaning a pure
authenticated crawl would also miss out on affected sites.

In a perfect world, each crawl would test thousands of
websites in both states. However, studying security issues
with authenticated sessions has many challenges and is a
time-intensive task that will never scale to the same di-
mensions as crawling with fresh browser sessions. We thus
suggest for new security issues to perform both a large-
scale crawl with fresh browser sessions and a smaller-scale
comparison of authenticated and non-authenticated sessions.
This way, the potential error introduced through unauthen-
ticated crawls can be estimated. To ease such studies, we
open-source our account framework pipeline.
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9. Conclusion

Given the importance of the web in our daily lives, it
is imperative to accurately measure its state of security. We
set out to investigate the impact that (lacking) authentication
can have on web security measurements. Our comparative
analysis of about 200 sites revealed that unauthenticated
results can be significantly skewed depending on the type
of measurement and research question.

In particular, while overall trends in security header
adoption can be measured in fresh browsing sessions, vul-
nerable libraries and exploitable XSS flaws are less prevalent
before authentication. Moreover, our results for third-party
inclusions show that in order to obtain a comprehensive
picture for studies that require precise numbers (such as
CSP allowlists or tracking analyses), both states should be
considered where possible. Moreover, generally speaking,
more functionality is exposed post-login, which allows for
more thorough analyses. To enable other researchers to
conduct their studies with login, we will make our semi-
automated account framework available.

Availability

The account framework and the crawling code for the
four experiments is available at: https://github.com/cispa/
login-security-landscape.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

Measurement studies are common in web security. Typ-
ically, such studies are performed using browser-automation
software with fresh browser profiles. In contrast, real usage
of the web includes many sessions in which the user is
logged into their account. This paper conducts a measure-
ment study comparing the prevalence of web security flaws
on 2̃00 websites both when logged into an account and when
not logged into an account. The paper finds that the ability
to accurately generalize scans of the non-authenticated state
to the authenticated state depends on the class of security
flaw. For example, for XSS, the unauthenticated state will
likely underreport the vulnerability. Furthermore, authenti-
cated sessions are often exposed to JavaScript files not seen
in unauthenticated sessions. However, such differences were
not notable for some other classes of web security flaws
tested.

A.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) It has been long expected, but not verified, that only
crawling the unauthenticated state in large-scale mea-
surement studies might result in missing important
security problems. This paper confirms this hypothesis,
and it also quantifies how big of a problem this issue
seems to be for different categories of security prob-
lems. The lessons can make future web measurement
studies more rigorous.

2) The paper creates a tool to help with semi-automatic
registration and handling of user credentials and ses-
sions. This will greatly help researchers in performing
authenticated web scanning.

A.4. Noteworthy Concerns

1) Only around 200 sites were tested, limiting the gener-
alizability of the conclusions.

2) More critically, the sampling strategy for selecting
these sites likely exhibits biases towards very popular
sites, those in the English language, and those for which

it was easy to create an account. These skews again
limit the study’s generalizability.

3) Initial registration for the sites tested required a human
in the loop, though subsequent logins were automated,
again biasing the measurement away from sites whose
subsequent logins could not be automated.
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