
Who’s Breaking the Rules? Studying Conformance to the HTTP
Specifications and its Security Impact

Jannis Rautenstrauch

CISPA Helmholtz Center for Information Security

jannis.rautenstrauch@cispa.de

Ben Stock

CISPA Helmholtz Center for Information Security

stock@cispa.de

ABSTRACT
HTTP is everywhere, and a consistent interpretation of the pro-

tocol’s specification is essential for interoperability and security.

In 2022, after more than 30 years of evolution, the core HTTP

specifications became an Internet Standard. However, apart from

anecdotal evidence showing that HTTP installations violate parts

of the specifications, no insights on the state of conformance of

deployed HTTP systems exist. To close this knowledge gap, we sys-

tematically analyze the conformance landscape of HTTP systems

with a focus on the potential security impact of rule violations.

We extracted 106 falsifiable rules from HTTP specifications and

created an HTTP conformance test suite. With our test suite, we

tested nine popular web servers and 9,990 live web hosts. Our results

show that the risk for security issues is high as most HTTP systems

break at least one rule, andmore than half of all rules were broken at

least once. Based on our findings, we propose improvements, such

as more conformance testing and less reliance on the robustness

principle and instead explicitly defining error behavior.

CCS CONCEPTS
• Security and privacy→Web protocol security.

KEYWORDS
HTTP, Measurement, Specifications, Rule Violations

ACM Reference Format:
Jannis Rautenstrauch and Ben Stock. 2024.Who’s Breaking the Rules? Study-

ing Conformance to the HTTP Specifications and its Security Impact. In

Proceedings of the 19th ACM ASIA Conference on Computer and Communi-
cations Security (ACM ASIACCS 2024), July 1–5, 2024, Singapore, Singapore.
ACM, New York, NY, USA, 13 pages. https://doi.org/TBA

1 INTRODUCTION
The Web and its core communication protocol Hypertext Trans-

fer Protocol (HTTP) are everywhere: Phones, Computers, Cars,

Watches. HTTP is notorious for being complicated, having evolved

over many years and versions. The latest specifications are dis-

tributed over dozens of documents with hundreds of features and

thousands of lines. Additionally, modern HTTP communication

involves many participants, such as browsers, crawlers, proxies,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN TBA

https://doi.org/TBA

load balancers, and origin servers. They all need to follow the same

specifications and agree on the same interpretation. Otherwise, in-

teroperability problems, performance issues, semantic gap security

threats, or inconsistent protection against attacks can occur.

Evidence from browsers shows that different implementations

often diverge in their interpretation and implementation of specifi-

cations [40, 49, 15]. However, apart from anecdotal evidence and

analysis of singular features, e.g., caching [51], no common knowl-

edge of web servers’ conformity to specifications exists. The main

reason for this lack of knowledge is that no commonly agreed-on

test suite for HTTP conformance exists. Browsers have created

the Web Platform Tests [84], but nothing similar for HTTP exists.

REDbot [56], an HTTP linter, does not suffice because it refers to

the previous RFC generation of HTTP, misses many features such

as HTTP/2 support (nowadays used by up to 66% of websites [63]),

and has no security focus.

To close this research gap, we investigate the following four

research questions: (1) What is the state of HTTP conformance in
the wild? ; (2) Does HTTP conformance vary between popular and less
popular websites? ; (3) Which consequences does non-conformity to
the HTTP specifications have? ; and (4) How could HTTP specification
conformance be improved?

To aid in that, we created an HTTP/1 and HTTP/2 security-

focussed conformance test suite by systematically analyzing HTTP

specification-related documents, extracting falsifiable rules for re-

quirements and recommendations, and implementing test cases for

each rule. We then extensively analyzed HTTP rule violations on

nine local servers and 10,000 websites. The results highlight that

HTTP conformance is far from perfect, as over half of our rules are

violated at least once, and most websites violate at least one rule,

while the local servers violate between six and ten rules.

This new test suite, which we release with the paper [60], allows

us to make the following contributions:

• We create a methodology to test for HTTP conformance of

responses and open-source a large set of conformance tests

for HTTP rules (Section 3).

• We perform the first web-scale evaluation of HTTP specifi-

cation conformance for both local servers and 10,000 general

websites (Section 4).

• We discuss potential negative security implications of viola-

tions from our measurement results (Section 5).

• We identify causes of lacking conformance and provide a

set of recommendations to have less divergence between

specifications and implementations (Section 6).

https://orcid.org/0009-0002-4816-0428
https://orcid.org/0000-0001-9659-0700
https://doi.org/TBA
https://doi.org/TBA

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

2 BACKGROUND
HTTP is the fundamental application protocol of the web. From its

initial purposes as a simple document-sharing system in 1989 [10],

the protocol developed over many iterations to a massive complex-

ity, allowing native-like applications in the browser. In this section,

we explain the history of HTTP, the request-response pattern of

HTTP, how different participants should conform to the specifica-

tions, and which (security) issues can arise from non-conformance.

2.1 History of HTTP
The original version of HTTP, envisioned in 1989 and implemented

in 1991, only had minimal functionality. This version was never

formally specified but is nowadays known as HTTP/0.9 [9]. In the

following years, many extensions were implemented and tested to

allow for more complex applications, e.g., requiring authentication.

These efforts resulted in an after-the-fact informational specifica-

tion of HTTP/1.0 in 1996 [54]. To unify server behavior and fix

many of the discovered issues, the first HTTP/1.1 specification

was published only one year later as a proposed standard [26]. Two

years later, the HTTP/1.1 specifications were updated and upgraded

to a draft standard [55].

After being stable for a long time, the HTTP/1.1 specifications

were updated in 2014 [30] to clarify ambiguities that came up and

deprecate certain features such as header folding over multiple lines
that turned out to be dangerous. As HTTP always was a plain-

text protocol, several performance issues existed. So, an updated

version using a binary protocol was introduced in 2015. The new

version is called HTTP/2 and uses almost the same semantics but a

different transmission over the wire [8]. In 2022, the HTTP spec-

ifications finally reached the status of an Internet Standard, the

highest specification grade. In the update, the HTTP semantics [27]

were separated from the underlying transmission over the wire

protocol, such as the updated HTTP/1.1 [29], HTTP/2 [72] and

newly introduced HTTP/3 [11] protocols.

However, the upgrade to an official Internet Standard was neither

widely published nor recognized. Many HTTP proxies, servers, and

clients still refer to RFC 7230 or even RFC 2616. For example, the

codebase of Apache [31] returns four matches for RFC 9110 but

ten matches for RFC 7230 and even 66 for RFC 2616. Similarly, the

codebase of node.js [32] matches RFC 9110 two times, whereas

RFC 7230 matches eleven times and RFC 2616 matches eight times.

Popularly used third-party documentation has the same issues. The

Evolution of HTTP [18] article of MDN still refers to RFC 7230 even

though it was updated in 2023.

In addition to the core HTTP specifications, many additional

features, such as specific headers or request methods, were defined

in other RFCs and documents, such as in the Fetch [80] or HTML

living standard [81]. All in all, HTTP became a complex topic.

New developers wanting to create a conformant HTTP processor

would need to read hundreds of pages distributed over dozens of

documents and often incorrectly start with RFC 2616 or third-party

resources based on RFC 2616 instead of RFC 9110.

2.2 Request and Response Pattern
Regardless of the version of HTTP, its encryption status, and its un-

derlying transport protocol, HTTP always uses a request/response

GET /test/ HTTP/1.1
Host: conformance.spec
Accept-Language: en

(a) HTTP/1.1 request

HTTP/1.1 200 OK
Date: Wed, 17 August 2023 14:28:02 GMT
Server: RuleBreaker
Content-Length: 29769
Content-Type: text/html

(29,769 bytes of the requested web page)

(b) HTTP/1.1 Response

Figure 1: HTTP request and response

pattern. For brevity and understanding, we describe an HTTP/1.1

exchange; other versions use a roughly equivalent form.

Figure 1 shows an example request/response pair. A client sends

a request, consisting of the request line specifying the method GET,
the path /test/, and the HTTP version HTTP/1.1, to a server. Subse-

quently, the client can add request headers; the Host headermust be
present according to RFC 9110 [28], while all other request headers

are optional. The headers are then terminated by an empty line,

followed by an optional message body (omitted from the example).

A server parses received requests, processes them, and then

returns an HTTP response to the client. A response first consists of

the status line, containing the HTTP version HTTP/1.1, the status
code 200, and optionally of a reason phrase OK. In line with request

headers, the server can also specify an arbitrary number of response

headers, some of which are mandatory. Which headers are required

depends on the returned status code, the capabilities of the server,

and the request method and headers. Finally, the response can

carry a body (here 29,769 bytes), which again is separated from the

headers by a blank line.

2.3 HTTP Participants and Conformance
Modern HTTP communication does not only consist of a client

performing a request and a server generating a response as we

have described in Figure 1. Instead, most requests to websites pass

through an HTTP processing chain containing a plethora of inter-

mediaries such as proxies or caches. These intermediaries can alter

requests and responses or decide not to pass them on and generate

their own response, e.g., return a cached element or an error.

Most HTTP-related specifications follow RFC 2119 [12] to specify

requirements and recommendations. Furthermore, the core HTTP

specification states that “An implementation is considered confor-

mant if it complies with all of the requirements associated with the

roles it partakes in HTTP.” [28]. Many rules apply to all participants.

For example, the Allow header is mandatory if the status code is 405,
and generated headers must fulfill their syntactic requirements as

specified by their ABNF grammars. However, some rules only affect

certain participants or depend on their protocol role. One example

is that while generating headers, senders must strictly adhere to

a header’s ABNF; however, receivers should apply laxer parsing

rules to allow for common errors.

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

2.4 (Security)-Issues of Nonconformity
Not following specifications to the letter, i.e., breaking HTTP rules,

can have negative consequences. In general, these consequences

highly depend on the exact rule violated and also how the rule

is violated. In the following, we survey known (security) issues

related to incorrect HTTP messages.

First, non-conformance could mean that certain (mandatory)

features are not supported. The missing features could lead to issues

for end-users when accessing the server in a browser. Also, it could

break functionality or confuse other tools, such as web crawlers or

automated testing tools.

Second, violations of many rules can negatively impact perfor-

mance on the web. For example, the Date header is required if a

sender has a clock; without that header, caching is impacted. Also,

if persistent connections do not work, connections to a site will be

slow.

Even worse is that differing interpretations of the HTTP spec-

ification and failing to parse requests and responses strictly can

lead to so-called semantic gap attacks [14, 65], such as Host of

Troubles [17], HTTP Request Smuggling [42, 41], Cache-Poisoned

Denial-of-Service [52], or Web Cache Deception [50]. The starting

point of such attacks is often that at least one participant breaks

an HTTP rule motivating a general study on HTTP specification

conformance.

Lastly, if HTTP participants regularly receive invalid requests

and responses, they often start writing workarounds to be able to

handle them. The specifications explicitly allow such workarounds:

“A recipient MAY employ such workarounds while remaining con-

formant to this protocol if the workarounds are limited to the

implementations at fault. For example, servers often scan portions

of the User-Agent field value, and user agents often scan the Server

field value, to adjust their own behavior with respect to known

bugs or poorly chosen defaults.” [28] However, such workarounds

can lead to even more issues. First, more workarounds emerge over

time, leading to a code complexity explosion. Also, as updates to

the violating software are rare, the workarounds must stay forever

and might even be persisted in the specifications. Even if the soft-

ware gets updated, the workaround might stay in place, leading to

compatibility issues with the new version. For example, many web-

sites did not serve security headers such as HSTS or CSP to legacy

browsers based on the user-agent header. As Firefox on iOS until

version 96.0 used a different versioning scheme than their desktop

counterpart, users using Firefox on iOS were incorrectly recognized

as legacy clients and received less secure responses [62]. Due to

the same issue, browsers often implement error tolerance where

the browsers are trying to accept way more inputs than specified

by a grammar or trying to repair invalid values automatically [38].

As a result, various issues such as mutationXSS [39], browser fin-

gerprinting [2], and inconsistent security header behavior between

browsers [15] arise.

3 METHODOLOGY
This work studies the landscape of HTTP conformance of deployed

HTTP systems. It is not possible to show that an implementation is

conformant, but it is possible to show that an implementation is

non-conformant by demonstrating that it breaks individual rules of

HTTP; an implementation that breaks such rules can be classified as

non-conformant. To create such rules, we performed a systematic

analysis of the HTTP specification and extracted falsifiable proper-

ties. In the following, we explain which documents we considered,

how we extracted falsifiable rules, and how we tested whether real

HTTP systems follow these rules.

3.1 HTTP Specification(s) and Rules
There is no single comprehensive HTTP specification document.

Instead, HTTP-related specifications are distributed over many doc-

uments issued by several organizations, such as the IETF, W3C,

or WHATWG. The core of HTTP is defined by the recently up-

dated RFCs that describe the semantics of HTTP (9110), caching

in HTTP (9111), and different HTTP versions (9112-9114). These

RFCs build on earlier versions that are now obsolete. In addition,

other documents specify many additional features related to HTTP.

Table 1 lists all specification documents we considered along

the number of extracted rules. The table also shows the number of

broken rules per document presented in Section 4. We consider the

core HTTP spec documents RFC 9110-9111, HTTP/1.1 (RFC 9112),

and HTTP/2 (RFC 9113). In addition, we consider two RFCs defining

important HTTP features that precede the current generation of

HTTP specifications but were not obsoleted by them: Cookies (RFC

6265/State Management) and Patch Method (RFC 5789). Further, we

include RFC 6797 and five other documents specifying (browser)

security features activated by HTTP headers.

3.1.1 Rule Criteria. After having identified the relevant documents,

we extract falsifiable rules from them. Here, we leverage the MUST

and SHOULD language specified by RFC 2119 [12]. Rules that would

be classified Optional (MAY in RFC) are not considered, as the spec-

ification does not pose any binding guidelines for implementation,

and implementations can differ widely for good reasons.

While rules for all participants of theHTTP protocol, such as user

agents (i.e., clients), origin servers (i.e., websites), and intermediaries

(e.g., caches or load balancers) exist, we focus on rules that are

valid on all responses regardless of which participant produced

the response. This selection criterion enables us to test arbitrary

websites as we do not need to know which participant of a complex

HTTP processing chain generated or modified the final response.

We do not test HTTP clients or take rules applying to requests

into account as we want to study the landscape of deployed HTTP

systems. We leave the testing of HTTP clients open for future work.

Many of the rules for HTTP participants are not falsifiable in

a black-box model. For example, to falsify the following rule “A

recipient MUST ignore the If-Modified-Since header field if the re-

source does not have a modification date available”, we would need

to know whether the resource has a modification date and whether

the header was ignored, neither of which is realistic from external

observation. Thus, we focused on rules that are clearly falsifiable by

only analyzing responses received after sending requests to servers.

3.1.2 Rule Extraction. Based on the above criteria, we extract rules

for HTTP participants that can be falsified by analyzing responses

after sending probe requests to servers, regardless of whether addi-

tional intermediaries are involved.

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

Name Title Status Organization Date #Rules #Broken Rules

RFC 5789 PATCH Method for HTTP Proposed Standard IETF March 2010 2 2

RFC 6265 HTTP State Management Mechanism Proposed Standard IETF April 2011 4 4

RFC 6797 HTTP Strict Transport Security (HSTS) Proposed Standard IETF November 2012 5 4

RFC 9110 HTTP Semantics Internet Standard IETF June 2022 55 38

RFC 9111 HTTP Caching Internet Standard IETF June 2022 7 4

RFC 9112 HTTP/1.1 Internet Standard IETF June 2022 10 6

RFC 9113 HTTP/2 Proposed Standard IETF June 2022 5 1

CSP Content Security Policy Level 3 Working Draft W3C February 2023 4 3

PP Permissions Policy Working Draft W3C February 2023 1 1

UIR Upgrade Insecure Requests Editor’s Draft W3C October 2022 2 2

Fetch Fetch Living Standard WHATWG March 2023 8 7

HTML HTML Living Standard WHATWG March 2023 3 3

Table 1: Considered specification documents and extracted rules

While some previous works tried to use semi-automated tech-

niques using natural language processing [65], the results of current

NLP technology are still unsatisfactory for texts as complex as the

HTTP specifications, and we instead manually parsed the specifi-

cation documents. Guided by the RFC keywords, we scanned the

documents for sentences specifying what rules participants of the

HTTP protocol have to follow. If a rule matched our above-defined

criteria, we saved it in a database, including a name, short descrip-

tion, verbatim text from the specification document, link to the

document, and several other attributes explained below.

We attach a specification level to each rule. The level can be

Requirement (MUST in specification if RFC), Recommendation

(SHOULD in specification if RFC), or ABNF (Augmented BNF [20];

defines the grammar for HTTP fields).

ABNFs are usually required to be followed by senders; for re-

ceivers, more lax parsing rules are often defined as legacy clients

are known to send values that do not conform to the specified

syntax. Contrary to their name, recommendations in RFCs are not

only an implementation suggestion but are by default to adhere to:

“there may exist valid reasons in particular circumstances to ignore

a particular item, but the full implications must be understood and

carefully weighed before choosing a different course.” [12].

In addition, we attach a test type to each rule. Types explain

how a rule can be violated. We distinguish two main groups: single

and multi. Single means the test property can be violated by a

single response, potentially only if the response is to a specific

probing request, such as a particular request method. Multi means

the test property can only be broken by several related responses,

e.g., HEAD responses should be similar to GET responses for the

same resource.

3.2 Testing Framework
All considered rules specify invariants of request-response groups.

Thus, we must send requests to test targets and analyze their re-

sponses to test HTTP conformance. We create one test for each

rule, and each test analyzes one-to-many request-response pairs.

We created each test case as a Python function and tested them

by deploying a violating and a non-violating endpoint using WPT-

serve [85]. We could not host a violating endpoint for a small num-

ber of test cases as the underlying HTTP stack of WPTserve using

Python did not allow us to send some severely broken responses

even though the tool’s purpose is sending invalid HTTP responses.

The single test rules are split into probe and direct tests. For probe
test rules, we generate a large number of syntactically valid probe

requests. By using an array of various probe requests, we aim to

induce a wide range of behavior in HTTP implementations. In total,

we send 180 probe requests (HTTP/1.1, HTTPS/1.1, HTTPS/2, sev-

eral HTTP methods, and several headers). We send these requests

with a standard HTTP client (Python HTTPX [23]). We run each

test case on all responses received for all probe requests. For direct
test rules, we send syntactically invalid requests, e.g., a request

without a Host Header. Such invalid requests are not allowed by

most HTTP client tools. We thus send them over sockets directly,

with and without HTTPS, using HTTP/1.

For the multi test rules, we give each test case access to all

requests and responses obtained for a URL. The test case then uses

all responses necessary, e.g., all pairs of responses belonging to

requests that either use HEAD or GET but are otherwise identical.

Given a URL to be tested, we run all probe requests on it. The

HTTP client is connected to a proxy (Mitmproxy [19]), and every

probe test is automatically run on each received response. The probe

requests are rate-limited, and we use one proxy per tested origin.

After all probe requests have been run, we invoke each multi test
with all request-response pairs as input. Lastly, we run all direct
tests on the URL. Two direct tests are only run once per host and

not per URL as they are only applicable to the server as a whole and

do not specify a URL, e.g., CONNECT-related tests. We do not run

direct tests on real websites due to ethical concerns, as explained

in Section 6.2.

We save each request and response pair in a database, including

the corresponding headers and bodies, for later analysis. In addition,

we save the test outcome for each applicable request/response pair.

4 EVALUATION
For our evaluation, we crafted tests for a total of 106 extracted

rules as shown in Table 2. Looking at the specification level of each

rule, we see that requirements (41) are the most prevalent, followed

by ABNFs (38) and recommendations (27). We implemented most

of them as probe tests (89), followed by direct tests (11) and multi
tests (6).

https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc6265
https://www.rfc-editor.org/rfc/rfc6797
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9111
https://www.rfc-editor.org/rfc/rfc9112
https://www.rfc-editor.org/rfc/rfc9113
https://www.w3.org/TR/2023/WD-CSP3-20230220/
https://www.w3.org/TR/2023/WD-permissions-policy-1-20230322/
https://w3c.github.io/webappsec-upgrade-insecure-requests/
https://fetch.spec.whatwg.org/commit-snapshots/8f109835dcff90d19caed4b551a0da32d9d0f57e/
https://html.spec.whatwg.org/commit-snapshots/578def68a9735a1e36610a6789245ddfc13d24e0/

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

Test Type

Specification Level Probe Direct Multi All

Requirement 29 8 4 41

ABNF 38 - - 38

Recommendation 22 3 2 27

All 89 11 6 106

Table 2: Overview of the considered HTTP rules

We test two groups of HTTP implementations: popular web

servers and real websites. For popular web servers, we used servers

from the w3techs report [77]. For real websites, we used the CrUX

dataset of February 2023 and tested the Top 5,000 origins, and

additionally, 5,000 randomly sampled origins ranked between the

Top 500K and 1M. The list of tested hosts and Dockerfiles for the

local servers are available online [60]. The local server versions are

listed in Table 6 in the appendix.

4.1 Local Servers
Out of the ten most popular web servers according to w3techs,

we test five (Nginx, Apache, OpenLiteSpeed for Litespeed, Node.js,

and Caddy). The other five are either not available for self-hosting

(Cloudflare Server, Google Servers, IdeaWebServer), only work on

Windows (Microsoft-IIS), or do not work standalone as they require

an upstream server (Envoy). In addition, we test three more popular

web servers (Jetty, Tomcat, OpenResty) and one reverse proxy that

can run without configuring any upstream servers (Traefik). We

left most of the configurations of the nine tested servers in their

defaults. However, we enabled both HTTPS and HTTP/2 for all but

Node. We configured all servers to host a simple HTML file. Traefik

cannot host static files, and we did not configure any upstreams;

thus, it usually returns a 404 response.
For each tested server apart from Node, we test both the HTTP

and HTTPS versions of the server. We visit the landing page (/)
and a URL that should not exist (/{32randomalphanumchars}). For

every URL, we first run all 180 probe requests, then the 13 direct

tests, and lastly, we run the multi tests on the collected responses.

In total, we perform 6,120 probe requests and 816 socket requests

for the nine servers.

Local Server Results: Table 3 shows the results for the local
servers. 16 rules were violated at least once, and every server vio-

lated at least six rules (maximum ten). Two test cases were violated

by all nine servers, and four test cases were violated only by one

server. Seven of the broken tests were direct, six probe, and three

multi tests. We discuss security implications in more detail in Sec-

tion 5.

4.2 Popular and Long-Tail Hosts
The tested local servers only use a limited feature set of HTTP as

we only configured them to host a simple static file. Thus, we also

tested real websites in addition to the locally installed web servers.

Most of these sites do not host static files but instead provide rich

applications. Also, their requests and responses pass through plenty

of middleboxes, such as caches and load balancers, which can also

break the rules and lead to more complex and dangerous behavior.

T
e
s
t

T
y
p
e

S
p
e
c

L
e
v
e
l

R
u
le
N
a
m
e

a
p
a
c
h
e

c
a
d
d
y

j
e
t
t
y

n
g
i
n
x

n
o
d
e

o
p
e
n
l
i
t
e
s
p
e
e
d

o
p
e
n
r
e
s
t
y

t
o
m
c
a
t

t
r
a
e
fi
k

All

Direct Req Bad host 9

Probe Rec Redirect after HTTP-UIR 9

STS after UIR* 8

Direct Rec Blocked methods result in 405 7

Unknown methods result in 501 7

Req Illegal chars 7

Probe Req Allow header present for 405 3

Forbidden status-codes for POST 3

Direct Rec Allow CRLF prior to request line 2

Req Illegal whitespace after startline 2

Illegal whitespace in header name 2

Probe Req Date header required 2

ABNF Server ABNF 1

Multi Rec HEAD and GET same headers 1

Req Content-Length for HEAD=GET 1

Same headers for 304 and 200 1

All 7 7 8 6 8 10 6 6 7 65

Table 3: Violating servers for each broken rule (violating,
non-violating; highlighted rows are explained in Section 5;

* only applies to STS-safe hosts)

We took the top 5,000 origins from the February 2023 CrUX

dataset [22] and 5,000 origins from the Top1M bucket (ranked be-

tween 500k and 1M). We took the hostname of every origin in this

dataset and tested each host with HTTP and HTTPS. As CrUX

includes HTTP and HTTPS origins separately, hosts can occur two

times. In our dataset, ten hosts occurred twice. Thus, we tested a

total of 9,990 distinct hosts and 19,980 origins. In addition to the

landing page and the non-existing page, if the request to the landing

page is redirected to a same-origin URL, we also test that URL to

test a URL that is likely to neither be redirecting nor cause an error

such as 404 Not Found. If an initial standard HTTPX GET request

to the landing page throws an error or times out, we mark the

origin as non-reachable. Before we test each URL, we perform one

standard HTTPX GET request to the URL under test. If this request

does not throw any error, we start running all our probe requests

against it; otherwise, we abort running tests for this URL.

To not accidentally cause any havoc, we do not run our direct

tests against real websites, as, e.g., syntactically invalid requests

might cause issues such as HTTP Request Smuggling, which we

discuss later. Additionally, we refrain from potentially dangerous

probes using DELETE. In total, we ran 6,003,200 probe requests, out

of which 27,417 (0.46%) failed according to our HTTPX test runner.

The results for all violated rules in the wild are presented in

Table 5 in the appendix. The most broken rule applies to 8,440

(89.14%) hosts, whereas many rules only are broken on a small

number or even only one host. A total of 9,431 (99.61%) hosts broke

at least one test case, and 68 test cases got broken at least once. The

maximum number of broken tests for one host is 16.

Comparison of popular and long-tail hosts: The results for
popular and less popular hosts are similar, andwe could not discover

any influence of the rank on HTTP conformance. The average

number of violations per host is 4.69 for both groups. In addition,

60 unique rules are broken across all popular hosts and 59 for the

long tail.

/
/{32random alpha num chars}

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

5 SECURITY IMPACT
As explained in Section 2.4, we want to highlight that even without

an existing exploit, every inconsistency is a risk. In general, ev-

ery broken HTTP rule violation and inconsistency between HTTP

processors is bad as they can lead to various issues such as inter-

operability and functionality loss, non-optimal caching, negatively

influencing web measurement tools or search engine robots, or

increasing the attack surface due to inconsistent security header

behavior in browsers, or semantic gap attacks.

Still, the potential negative impact of a violated rule highly de-

pends on both the rule and how exactly it is broken. In the following,

we discuss three groups of potentially hazardous rule violations

(everything in Table 4 and the rows shaded in Table 3) and addi-

tional problematic issues we discovered while running our tests.

To decide whether a rule could be considered dangerous, two au-

thors went through the list of rules and, for each rule, discussed

whether it is related to security. In total, we classified 55 rules as

security-relevant, out of which 37 were broken at least once.

5.1 HTTP(S) Issues
HTTP is inherently prone to MITM attacks, and HTTPS, Strict-
Transport-Security (STS) and Upgrade-Insecure-Requests (UIR) can
be used to mitigate such attacks. If the UIR header is received

in an HTTPS request, a server that supports STS should send a

Strict-Transport-Security header. If the UIR header is received in

an HTTP request, a server should redirect to trustworthy URL, i.e.,
to HTTPS [75, sec.3.2.1]. The two rules STS after UIR and Redirect

after HTTP-UIR test for this behavior, and our results show that most

hosts do not deliver the best possible security.

The first rule only applies to STS-safe hosts. We cannot know

whether a host is STS-safe; however, out of the 8,440 violating hosts,

2,386 hosts served an STS header at least once and are thus clearly

not following the specification. Additionally, given the widespread

adoption of free Let’s Encrypt certificates [13, 24, 25], it is best prac-

tice to be STS-safe, i.e., sites should be reachable through HTTPS.

The second rule applies to all HTTP hosts; however, many hosts

performed no redirect for certain requests but instead returned

status codes such as 405. From all the 9,468 reachable hosts, 252

were only reachable by HTTP. However, even they could follow

the specification by redirecting to a URL with a different host. Vio-

lations of both these rules could lead to unsafe HTTP connections

and should thus be avoided.

5.2 Security-Related Headers
Duplicate, missing, or invalid headers can have negative conse-

quences for security. In the following, we first describe potential

consequences for six groups and finish with an analysis of reasons

for rule violations concerning headers.

5.2.1 Cookies. Even though cookies were never meant for security,

they are nowadays a cornerstone for critical security functional-

ity such as authentication and authorization. While cookies with

the wrong date format might only have an unintended lifetime,

inconsistencies in the interpretation of a set-cookie string as well

as duplicate cookies could break the confidentiality and integrity of

cookies even in the presence of countermeasures such as __HOST

Group Rule Name #Hosts

HTTP(S) Issues:

STS after UIR* 8,440

Redirect after HTTP-UIR 7,822

Security Related Headers:

Cookies Cookies use IMF-fixdate 2,850

Duplicate cookie names 518

Set-Cookie ABNF 93

Cookies with duplicate attributes 22

STS STS not allowed for HTTP 550

STS ABNF 15

Duplicate directives for STS 1

Duplicates Duplicate headers 465

MIME Content-Type header required 290

Content-Type ABNF 48

XCTO ABNF 10

Restrictive XFO ABNF 262

Duplicate CSP 71

CSP ABNF 23

PermissionsPolicy ABNF 18

Duplicate CSP-RO 7

COOP ABNF 6

CORP ABNF 3

COEP ABNF 1

CORS AC-Allow-Origin ABNF 83

AC-Allow-Credentials ABNF 28

AC-Allow-Methods ABNF 19

AC-Allow-Headers ABNF 18

AC-Max-Age ABNF 3

HRS Primitives:

Forbidden Content-Length for 1XX and 204 55

Forbidden surrounding whitespace for fields 51

Forbidden content for 304 46

Content-Length ABNF 3

Upgrade required for 101 1

TE forbidden for non HTTP/1.1 responses 1

TE forbidden for 1XX and 204 1

Table 4: Potentially dangerous violated rules in the wild
(* only applies to STS-safe hosts)

prefixes [68]. The most prominent violation was the incorrect usage

of dates. The specification requires the usage of IMF-fixdates [6,

sec.4.1.1], however 2,850 sites used other date formats and, for ex-

ample, used dashes instead of spaces to separate day, month, and

year.

Such dates may lead to different browsers interpreting cookies

differently, which in the worst case, could lead to cookies not be-

ing deleted, as this is usually achieved by setting an expiry date

in the past. Second, 518 hosts delivered cookies with duplicate

names, which should not be done according to the specification [6,

sec.4.1.1]. Duplicate cookies may cause different browsers to rely on

either the first or last occurrence of the cookie, which may cause in-

consistencies. Moreover, 93 hosts violated the ABNF for Set-Cookie.

As shown by Squarcina et al. [68], the error tolerance in attempting

to parse cookies that fail to follow proper syntax leads to several

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

security problems. However, strict parsing would ignore cookies

for the affected hosts, which causes functionality issues.

5.2.2 STS. Strict-Transport-Security can be used to enforce HTTPS

connections. As shown in Section 5.1, most websites do not deliver

STS headers consistently even if requested with Upgrade-Insecure-
Requests. For those hosts that sent an STS header, we conducted

further analyses. Importantly, 550 hosts sent the STS header through

an insecure HTTP connection. Browsers ignore the STS header

in HTTP connections to ensure no breakage in functionality for

misconfigured HTTP origins. The correct way to implement STS is

to redirect the client to the corresponding HTTPS origin and set the

STS header there. The prevalence of themisconfiguration highlights

potential misunderstanding by operators, which may well believe

that setting the STS header saves them from network attackers, yet

their configuration has no impact on security whatsoever. Similarly,

broken ABNFs (15 hosts) and duplicate directives also render the

STS header invalid, nullifying its seeming protection.

5.2.3 Duplicate Headers. Many headers are not allowed to occur

several times in a response. On 465 hosts, at least one of the follow-

ing headers occurred twice: strict-transport-security, x-frame-options, x-

content-type-options, content-type, retry-after, server, access-control-allow-

origin, expires, age, report-to. Depending on the header, a browser

might choose the first or last or use some other complex processing

procedure. In either case, the resulting behavior might not be the

most secure choice, nor what the developer wanted, and behavior

might differ between browsers. As shown by Roth et al. [62], such

issues may even lead to entirely undermining well-designed pro-

tection, such as the accidental introduction of max-age=0 for STS,

which disables the mechanism altogether if contained in the first
header observed by the client.

5.2.4 MIME Sniffing. To inform browsers of the resource type

and how they should handle it, servers need to send the Content-
Type header. This header is paramount since otherwise browsers

are forced to use so-called MIME sniffing. MIME sniffing is the

process of scanning the first bytes of the response to deduce the

content type. This process, however, has been shown to lead to

issues like XSS if uploaded images are misinterpreted as HTML or

script content [82, 7]. If no content-type header is specified at all

(Content-Type header required), if the specified content-type is invalid

(Content-Type ABNF), or if MIME sniffing is not correctly disabled

(XCTO ABNF), the potential for MIME sniffing issues is high. As

our tests showed, 290 hosts failed to deliver a content type header

at least for one request, even with our unintrusive tests. These

results hint that we could only cover the tip of the iceberg, and

such issues may be more prevalent in practice. Moreover, 48 hosts

had invalid values for their content types, and 10 sent a malformed

XCTO header.

5.2.5 Restrictive Headers. The headers in the restrictive group all

instruct browsers to (not) allow some security-related behavior. In-

valid values can lead to inconsistent behavior between browsers [15,

83, 66] and only some users being protected. Additionally, it can

lead to a false sense of security (If a security header is set, my site will
be secure). However, if the header is invalid, the security feature will
often not be activated, and the browser will fall back to an insecure

default. Due to malformed and inconsistent HTTP, browsers often

introduce error tolerance, and parsing gets more complex over time.

Complex error tolerance can introduce various issues that either

only occur in some browsers or regresses between versions [15, 83,

33, 49]. Notably, the majority of cases (XFO with 262) were caused

by the specification being updated years after the header was first

deployed. Moreover, the Duplicate CSP case highlights an issue be-

tween specification and practice: composing two CSPs is the gold

standard for security [79, 78]. Even though a CSP can be composed

in two ways, by sending a list in one header (using a comma) or by

sending several CSP headers, the specification recommends not to

use the second way [74, sec.3.1].

5.2.6 CORS. Lastly, even for features with secure defaults such as

CORS, incorrect header values are problematic as they can lead to

developer frustrations if they do not get it to work and often lead

to overly unrestrictive or insecure values such as origin reflection

or allowing everything (∗).

5.2.7 Reasons and Examples. We have identified six common rea-

sons for how and why these rules were broken. First, many ABNFs

were broken due to the incorrect separation of several elements

within a header or between a value and a parameter. Depending on

the header, this has to be done with commas, semicolons, spaces,

or equal signs, confusing developers. Second, some violating head-

ers partly used the syntax from another header or seemed to be

mistaken for another header entirely. For example, we observed

X-Frame-Options headers with CSP-style syntax, such as None or *,
and we detected permission policy headers using the old feature

policy syntax. Third, we observed many values that were either

allowed in the past (e.g., XFO: allow-from) and are now deprecated

or never existed but, from a common-sense viewpoint, might exist

(e.g., XFO: allowall). Fourth, many responses appeared to entail

typos in directive names and similar. For example, Thu, 11 May
2023 07:0309 GMT seems to be a manually formatted date where

the second colon was forgotten. Fifth, we also discovered invalid

headers related to incorrect encoding and failed templating. Some

of these should have been several headers but were delivered as one

header by the server, as linebreaks were not interpreted correctly.

One example is: Connection: Close
Content-Type:text/html.
Other headers had a literal value of undefined or contained strings

such as %{HTTP_HOST}, clearly indicating failed templating. Fi-

nally, many responses incorrectly specified headers multiple times

or used a list format, whereas only a single value is allowed. We

observed both responses with the same value repeated and with dif-

fering values. We speculate that headers such as X-Frame-Options

are often set both by an origin server and by another entity in the

HTTP processing chain, such as a reverse proxy.

5.3 HRS Primitives and Host of Troubles
The most famous attacks related to HTTP parsing are HTTP Re-

quest Smuggling (HRS) attacks [37, 42]. These attacks are usually

related to varying interpretations of the limits of messages by par-

ticipating protocol partners such as a reverse proxy and an origin

server. Such parsing discrepancies are often caused by multiple or

invalid content-length and transfer-encoding (TE) headers or other

assumed invariants related to the body of HTTP messages. Al-

though the basic examples such as two content-length headers are

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

fixed in all major server and proxy implementations, new, more

complex issues are discovered every year, for example, related to

HTTP/2 to HTTP/1.1 conversion [41].

In the following, we present violated rules that we classified as

HRS primitives in the wild and local servers. Such violations do not

necessarily have to lead to HRS but pose a risk to existing and new

HTTP processors in a message chain if not handled properly and

consistently.

5.3.1 HRS Primitives in the Wild. For some status codes, HTTP

versions, or responses to certain methods Content-Length or TE

headers are not allowed, and their presence could confuse HTTP

tools that do not validate this requirement (Forbidden Content-Length

for 1XX and 204; TE forbidden for nonHTTP/1.1 responses; TE forbidden for

1XX and 204). In addition, incorrect content-lengths (Content-Length

ABNF) or transfer-encodings can also lead to differences in parsing.

Also, responses with status code 304 are not allowed to have any

content (Forbidden content for 304). We discovered 46 hosts that send

bodies in HTTP/2 responses with status code 304. If a reverse proxy

does not reject the body of such a response, it could interpret the

erroneous body as the following message and go out of sync with

the origin server. Similar things have occurred in the past when a

HEAD response incorrectly contained a body [21].

Secondly, incorrect whitespace in header names or values can

confuseHTTP processing chains as some entities strip them,whereas

others ignore the entire line or process them as is. Forbidden sur-

rounding whitespace for fields denotes behavior where whitespace was

encountered around field values that could lead some processors to

ignore the field.

Thirdly, the Upgrade required for 101 rule states that an upgrade

header is required for responses with status code 101. If this header

is missing, one cannot know which protocol it is being switched to,

and it can also lead to HRS [1].

5.3.2 Local Servers. The following violations concern the correct

handling of invalid requests and could thus only be tested for the

local server installations.

A prominent issue is the differing handling of invalid charac-

ters. The specifications state that “Field values containing CR, LF,

or NUL characters are invalid and dangerous, due to the varying

ways that implementations might parse and interpret those char-

acters” [28]. Our Illegal chars test revealed that 7/9 servers did not

return status code 400 for at least one of the forbidden characters.

OpenLiteSpeed allows \00, \r, and \n. Caddy, Traefik, Tomcat, and

Jetty allow \n. Nginx and Openresty allow both \r and \n. Apache

and Node correctly reject all three invalid requests.

Another issue is whitespace in header names. The rules Illegal

whitespace in header name and Illegal whitespace after startline show

that Node and OpenLiteSpeed do not reject requests with illegal

whitespace properly.

Lastly, while not an HRS primitive per se, the Bad host rule is

also critical as differing interpretations of the host header can lead

to host of troubles attacks [17]. The rule requires a request with

a bad host header to be rejected with status code 400. We used

no host, an invalid host (ABC), and two host headers, and each

tested server did not return status code 400 for at least one of

the three invalid options. Apache returns status code 200 for an

invalid host but correctly rejects requests with two hosts or no

hosts. OpenLiteSpeed and Node allow all three incorrect requests.

Jetty always returns code 400 for HTTPS but allows an invalid host

for HTTP. Caddy redirects invalid hosts for HTTP and allows them

for HTTPS.

These examples show that popular web servers violate core

HTTP rules and behave inconsistently, even in default configura-

tions.

5.4 Additional Problematic HTTP Behavior
In addition to the violated rules, we also observed other non-HTTP-

best practice behavior not covered by our tests in the wild. 106,127

HTTP/1.1 probe requests received an HTTP/1.0 response. 1,349

probe requests received responses with invalid body lengths (usu-

ally expected 0 bytes, received a couple hundred bytes). 3,088 re-

sponses were unexpected by the proxy either because they were

HTTP/0.9 responses or out of order. 100 responses contained spaces

between a header name and the colon. 548 responses failed to de-

compress, and several other errors occurred, such as 10 switch

upgrade events without a pending request or 71 responses with

invalid chunk headers. These results indicate that a few deployed

HTTP systems do not even conform to themost basic requirements.

6 DISCUSSION
In this section, we first present the limitations and ethical consider-

ations of our work. After that, we carefully analyze our insights and

suggest ways to improve the dismal HTTP conformance situation

in order to arrive at a more secure web.

6.1 Limitations
Our 106 extracted HTTP rules do not cover all of HTTP. Rules

regarding HTTP are not only defined in the 12 documents we con-

sidered for this work but certain features are defined in other docu-

ments. In particular, we did not consider HTTP/3 (RFC9114) [11],

as the HTTP proxy and client we used in our experiments did not

support it. Also, our manual rule extraction process is not free from

subjectivity, we might have missed or misinterpreted rules. In addi-

tion, we had to exclude many Requirements and Recommendations

as they were not black-box falsifiable, too vague, or only applied to

specific protocol participants such as caches. Finally, many parts

of the specifications are optional, or choices exist, resulting in var-

ious implementation differences, we could not discover with our

framework.

Our tests are thus inherently incomplete, and we cannot show

that a website or server follows all HTTP specifications. Further-

more, we cannot conclusively say that a website is more confor-

mant than another only because it breaks fewer rules in our tests

than another, as rules might be of varying importance, and other,

non-tested rules might be broken too. However, our tests show that

HTTP conformance is dismal and that many websites break various

clearly defined rules.

Moreover, we cannot reliably attribute a violated rule to one

specific entity in a complex HTTP processing chain, as any inter-

mediaries might generate or modify the response. However, as all

our rules apply to general responses, this means that the HTTP

configuration of the site, including its intermediaries, is not HTTP

conformant.

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

Finally, we only tested three URLs for nine servers and 9,990

hosts, for which we only ran a subset of tests due to ethical con-

siderations. More rule-breaking behavior might be discoverable

by testing more URLs or testing in a different state, such as login.

Also, depending on geolocation or crawl time, one might receive

different responses [62, 43].

6.2 Ethical Considerations
The most problematic issues we discovered are well-intentioned,

yet incorrectly configured security headers (e.g., an invalid STS

header voids any protection) and the HRS primitives. We notified

operators through email to webmaster@domain for these issues.

Testing for HTTP conformance requires sending potentially du-

bious requests to websites and analyzing the responses. Such a

process yields obvious ethical concerns as our requests might in-

terfere with the regular operation of the websites. To minimize

potential harm, we only send syntactically valid requests to web-

sites using a standard HTTP client (Python HTTPX [23]). We did

not send DELETE requests to websites to not accidentally delete

any resources on the servers. Also, the direct tests that require
sending malformed requests are only used against locally hosted

web servers and not against real websites, as they might lead to

denial of service or HTTP request smuggling.

In addition, we rate-limited our crawlers to avoid overwhelming

websites with requests. We only send one parallel request per origin

and wait two seconds between each probe request. Further, we

followed best practices and used a custom user-agent header leading

to a website explaining our experiment with the option to opt out

of our experiments. Finally, we add cache-control: no-store to each

request to ensure responses to our requests are not saved in any

intermediary caches to avoid Cache-Poisoned DoS attacks [52].

With all these safeguards installed, we believe that the potential

benefits of our work discovering issues in HTTP conformance of

websites outweigh potential negative consequences.

6.3 Insights and Problematic Consequences
One of the most impactful vulnerabilities in Web security in recent

years was the widespread finding of HTTP Request Smuggling [44].

One of the most significant contributors was the fact that some

servers would inconsistently process requests with both Transfer-

Encoding (TE) and Content-Length (CL) headers, even though the

specification explicitly says to ignore CL if TE is set to chunked.
These vulnerabilities show how hazardous it is if interpretations of

the HTTP specification diverge.

Currently, both implementations and the specifications often

allow certain malformed responses and introduce many special

rules leading to complex and hard-to-understand specifications and

error-prone code instead of strictly rejecting invalid messages. One

solution would be to change this behavior. However, many current

systems do not follow the specifications, and an implementation

that rejects all invalid responses would be unable to interact with

a large part of the web, posing a difficult trade-off. For example,

Cloudflare decided to accept a wide array of invalid HTTPmessages

for compatibility reasons [86].

In addition, the fact that there is no single specification of HTTP

is problematic. As rules are defined in isolation, they can interfere

with each other, creating unnecessary tension. For example, Redirect

after HTTP-UIR specifies that a server should redirect HTTP requests

with a UIR header to an HTTPS URL; at the same time code 405

blocked methods specifies that if a blocked method is encountered, a

response with status code 405 should be generated. As responses

with status code 405 do not redirect, it is impossible to fulfill both

rules simultaneously if a request with a blocked method and a

UIR header is encountered. Additionally, specifications sometimes

discourage secure behavior. For example, best practice for CSP

stipulates that two policies should be deployed [79]. However, the

specification [74] notes that having two separate headers is bad.

The correct (by the definition of the specification) solution is to use

a comma-separated list of CSPs in one header. Given the rules for

folding headers, this is de facto the same as sending two headers.

Even though setting and updating two headers is likely less complex

and error-prone, operators choosing two separate headers then act

against the specification
1
.

Since the early days of the web, error tolerance has been a vi-

tal issue. In the first “browser wars” [87], browsers were eager to

steal customers away from their competitors by rendering anything

that even remotely resembled HTML. The effects of this are still

felt today through attacks like mutation-based XSS or dangling

markup [39, 38]. Similarly, browsers ignore invalid headers without

notifying users of the (lacking) protection. In the best case, warn-

ings are shown in the browser console. However, in the case of

XFO, these warnings only are shown when loading the page in

an iframe. That is, a developer visiting their own site directly is

unable to recognize the issue. In contrast, for HTTPS deployment,

browsers went from warning users of insecure origins when enter-

ing passwords [25] to no longer showing a positive green indicator

on secure connections today, but instead explicitly marking inse-

cure connections with a negative indicator (stating Not Secure next
to the URL).

6.4 Towards Better HTTP Conformance
In the following, we outline how to improve HTTP conformance

in the wild based on our findings.

6.4.1 Lack of Specification Testing. We believe that one of the core

reasons for the current state of affairs is that no common test in-

frastructure or reference implementation for HTTP exists, and

implementers are thus left alone to read the specification or imple-

ment whatever they think works. The current specifications are

hard to understand and are distributed over many documents that

are not necessarily all updated simultaneously and might contradict

each other.

In the area of browsers, the situation was similar until recently

when the community and browser-driven efforts for a shared test

platform resulted in web-platform-test [84] in 2018. Although prob-

lematic browser differences are still regularly discovered, e.g., re-

lated to CSP [83] or XS-Leaks [46, 59], the WPT platform helps

browsers and developers fix such issues in a cross-browser com-

patible way. In the area of HTTP, nothing comparable exists. For

intermediaries such as proxies, the CoAdvisor project existed in the

past. However, the project was stopped due to a lack of interest, and

1
We reported this issue to W3C and the recommendation was removed: https://github

.com/w3c/webappsec-csp/pull/622

https://github.com/w3c/webappsec-csp/pull/622
https://github.com/w3c/webappsec-csp/pull/622

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

the last archived version only supports RFC 2616 [70]. For general

HTTP responses, the HTTP linter REDbot [56] exists. However,

this project does not support the new RFC 9110 specifications and

misses many functionalities, such as HTTP/2 support. The interest

in the project also appears low, and we could find, report, and fix a

bug in a header ABNF check that has existed for six years
2
.

We open-source our test suite as a starting point for such a testing

effort [60]. We hope that it sparks interest with server developers

and the web community so that many more test cases can be added

in the future. For many rules, where the specifications are vague,

a consensus on the correct behavior could be formed. Moreover,

we suggest providing better documentation and an overview of

the existing specifications to help implementers find the relevant

information. Within the specifications, failure behavior should be

made more explicit rather than allowing implementers to choose

how they handle invalid requests or responses. We also suggest

reducing the number of optional features and the number of pos-

sible choices as they result in diverging behavior. Moreover, we

suggest considering our results and continuously measuring the

web for conformance, and reconsidering recommendations and

requirements that are frequently broken to see whether they (still)

make sense. Finally, more examples for both valid and invalid cases

in the specifications could help developers.

6.4.2 Reconsidering the Robustness Principle. An underlying cause

for many of the discovered issues is the robustness principle [57, 58,

16] also known as Postel’s law that states “be conservative in what

you do, be liberal in what you accept from others.” [57]. Due to how

many implementations apply and (mis)interpret the principle on

the web nowadays, most participants of the HTTP protocol do not

strictly reject invalid requests or responses but silently try to repair

them or ignore only the invalid parts.

Thus, sending an invalid request or response usually does not

cause any immediate breakage but instead seems to work. The

sender can, therefore, not directly realize their mistake. Moreover,

specifications often contain different rules for sending and receiving

(e.g., of a specific header). As a result, the specifications become

complicated, and many senders choose to send messages allowed

by the receiving specification even though it is not allowed by the

sending specification. As a final consequence, this can lead to many

hard-to-detect and fix issues such as HTTP Request Smuggling [37]

or Host Of Troubles attacks [17]. Such issues are hard to debug,

as it is unclear what every HTTP processor in a processing chain

does.

The principle or the currently observable interpretation of the

principle has been criticized repeatedly [5, 64, 17, 73]. We also note

this to be one of the key factors to the issues we discovered in the

wild and call on standardization bodies and vendors alike to ensure

that (a) the same rules apply to senders and receivers and (b) any

requests/responses which violate a rule must be rejected.

6.4.3 More User-Facing Warnings. On the modern web, almost

all websites are reachable through HTTPS. The recent success of

HTTPS is not only because of the availability of free CAs like Let’s

Encrypt but also because browser vendors incentivize operators.

They gradually went from having a positive green indicator for

2
https://github.com/mnot/redbot/pull/306

secure connections through having a red indicator on insecure ones

all the way to only showing the negative red indicator for any site

without HTTPS. Additionally, Google incorporates the usage of

HTTPS into their ranking [36], which effectively forces most sites

to enable secure connections.

In line with this, browsers should also be more explicit about

website misconfigurations. In that scenario, both users and oper-

ators would be informed about mistakes in the sites they visit or

run, which would incentivize fixes to avoid a bad reputation.

7 RELATEDWORK
This section presents other works focusing on conformance testing

efforts inHTTP, theworst possible consequences of non-conformity:

semantic gap attacks, research that revealed non-conformity in the

past, and conformance testing in browsers and other protocols.

HTTP specification analysis and conformance. Shortly after the

initial draft standard specification of HTTP/1.1 in RFC 2616 in

1999 [55], Krishnamurthy et al. investigated compliance of popular

websites by testing for essential functionality such as support for

the HEADmethod or for persistent connections showing that many

sites are not compliant [48]. In 2008, Adamczyk et al. performed

a similar study, only focusing on the methods GET, HEAD, OP-

TIONS, TRACE, and CONNECT, showing that many sites are still

not compliant [3]. Similarly, The Measurement Factory started an

industry project for testing HTTP compliance of intermediaries in

2001 [71]. However, this project was discontinued due to a lack of

demand [70]. The area of caching in HTTP, including conformance

to the specifications, was studied extensively by Nguyen et al. [51,

53, 52]. Since 2009, REDbot [56], the linter for HTTP, can check

for HTTP issues on websites. However, it is only used as a check-

yourself application rather than to study the general status of the

web, has a limited amount of supported test cases, and still needs

to be updated to the newest specifications.

In contrast to the first two studies, rather than testing for basic

features, we verify that no requirements or recommendations are

violated in received responses. In contrast to CoAdvisor, our tests

focus on responses received after an arbitrary HTTP processing

chain and not testing intermediaries in isolation. REDbot is the

most similar to our work, and we based our ABNF implementations

on it. However, it has never been used in a measurement study and

has no focus on the security impact of non-conformity.

Semantic gap attacks. In an HTTP processing chain, usually,

several different processors are involved. If they differ in their

semantic interpretation of the messages, this can have dramatic

consequences called semantic gap attacks. Several works studied

individual instances of such attacks, such as HTTP Request Smug-

gling [42, 41], Web Cache Deception and Cache Poisoning [50], and

Host-Of-Trouble [17].

We took a step back from concrete attacks and studied general

HTTP conformance, as violated HTTP rules are often a starting

point for these attacks.

Web (security) measurements. Many studies measuring the web

regularly show inconsistent and incorrect behavior by many sites.

While usually, it is not their primary goal, they provide evidence

https://github.com/mnot/redbot/pull/306

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

that many aspects of the HTTP specification are violated. For ex-

ample, many studies have shown that not only do most websites

configure an insecure content security policy, many sites even de-

liver malformed policies breaking their ABNF [79, 61]. Other works

showed forbidden duplicate headers or syntax errors in XFO and

STS headers [15, 66]. In addition, several projects such as Chrome

Platform Status [35] orWeb Tech Survey [69] collect statistics about

web traffic. However, these collect data mostly from benign, non-

ambiguous requests and responses, mainly counting the correct

feature usage and not violating instances.

Browser compatibility and conformance. Manyworks have shown

issues in browser implementations [83, 34, 45] or between browser

implementations [49, 40]. These include security issues, such as

a CSP not being applied in a browser, and functionality and in-

teroperability issues. To be as interoperable as possible, browser

vendors started the web platform test project, where they try to

implement features correctly and consistently between browsers

and specifications, including HTTP-related features [84].

Other protocols. The fact that implementations not following the

specification or applying differing interpretations lead to issues is

well-known in TCP [47], URL parsing [67, 4], or HTML [38]. To

help developers, the W3C provides an HTML and CSS validator as

well as a URL testing suite [76].

8 CONCLUSION
Consistent interpretation of specifications is essential for protocols

with several communication partners. Different interpretations or

intentional misbehavior can lead to issues such as DoS, broken

functionality, or semantic gap attacks. In this work, we studied

the landscape of HTTP conformance of widespread web server

implementations and real-world websites.

To that end, we extracted 106 falsifiable rules from HTTP spec-

ification documents and created over 100 test cases. By running

this test suite against 9,990 real hosts and nine local servers, we

could show that HTTP conformance is grim, with most tested im-

plementations violating at least one rule and more than half of

all rules violated at least once, including security issues such as

HRS primitives, MIME sniffing, and insecurely used security head-

ers. For example, 8,440 hosts failed to deploy STS after upgrading

insecure requests, and 550 hosts specified STS through HTTP, indi-

cating a lack of understanding of how the header works. Given that

browsers to not inform the developer about the misplaced header

through the console, such issues often remain hidden.

Our findings suggest varied causes, such as complicated and

vague specifications, missing direct negative feedback, and a lack of

testing infrastructure. By open-sourcing our test suite, we hope to

initiate a shift towards a more HTTP-conformant and thus secure

web.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. In

addition, we thank our student helper Eduard Ebert for his assis-

tance during a prestudy.

This work was conducted in the scope of a dissertation at the

Saarbrücken Graduate School of Computer Science.

AVAILABILITY
We open-sourced our tool chain and it is available at https://github

.com/cispa/http-conformance.

REFERENCES
[1] [SW] 0ang3el, 0ang3el/Websocket-Smuggle 2019. url: https://github.com/

0ang3el/websocket-smuggle.

[2] Erwan Abgrall, Yves Le Traon, Martin Monperrus, Sylvain Gombault, Mario

Heiderich, and Alain Ribault. 2012. XSS-FP: Browser Fingerprinting using

HTML Parser Quirks. arXiv: 1211.4812 [cs]. preprint.
[3] Paul Adamczyk, Munawar Hafiz, and Ralph E. Johnson. 2008. Non-compliant

and Proud: A Case Study of HTTP Compliance. https://hdl.handle.net/2142/

11424.

[4] Dashmeet Kaur Ajmani, Igibek Koishybayev, and Alexandros Kapravelos. 2022.

yoU aRe a Liar://A Unified Framework for Cross-Testing URL Parsers. In IEEE
Security and Privacy Workshops. SecWeb. doi: 10.1109/spw54247.2022.9833883.

[5] Eric Allman. 2011. The Robustness Principle Reconsidered. ACM Queue. doi:
10.1145/1989748.1999945.

[6] Adam Barth. 2011. HTTP State Management Mechanism. Request for Com-

ments RFC 6265. Internet Engineering Task Force. doi: 10.17487/RFC6265.

[7] Adam Barth, Juan Caballero, and Dawn Song. 2009. Secure Content Sniffing

for Web Browsers, or How to Stop Papers from Reviewing Themselves. In IEEE
Symposium on Security and Privacy. doi: 10.1109/sp.2009.3.

[8] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext Transfer

Protocol Version 2 (HTTP/2). Request for Comments RFC 7540. Internet Engi-

neering Task Force. doi: 10.17487/RFC7540.

[9] Tim Berners-Lee. 1991. HTTP 0.9. https://www.w3.org/Protocols/HTTP/

AsImplemented.html.

[10] Timothy J Berners-Lee. 1989. Information Management: A Proposal.

[11] Mike Bishop. 2022. HTTP/3. Request for Comments RFC 9114. Internet Engi-

neering Task Force. doi: 10.17487/RFC9114.

[12] Scott O. Bradner. 1997. Key Words for Use in RFCs to Indicate Requirement

Levels. Request for Comments RFC 2119. Internet Engineering Task Force. doi:

10.17487/RFC2119.

[13] BuiltWith®. 2023. Root Authority Usage Distribution on the Entire Internet.

https://trends.builtwith.com/ssl/root-authority/traffic/Entire-Internet.

[14] Andre Büttner, Hoai Viet Nguyen, Nils Gruschka, and Luigi Lo Iacono. 2021.

Less is Often More: Header Whitelisting as Semantic Gap Mitigation in HTTP-

Based Software Systems. In ICT Systems Security and Privacy Protection. doi:
10.1007/978-3-030-78120-0_22.

[15] Stefano Calzavara, Sebastian Roth, Alvise Rabitti, Michael Backes, and Ben

Stock. 2020. A Tale of Two Headers: A Formal Analysis of Inconsistent Click-

Jacking Protection on the Web. In USENIX Security Symposium. https://www.

usenix.org/conference/usenixsecurity20/presentation/calzavara.

[16] Brian E. Carpenter. 1996. Architectural Principles of the Internet. Request for

Comments RFC 1958. Internet Engineering Task Force. doi: 10.17487/RFC1958.

[17] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern

Paxson. 2016. Host of Troubles: Multiple Host Ambiguities in HTTP Implemen-

tations. In ACM SIGSAC Conference on Computer and Communications Security.
doi: 10.1145/2976749.2978394.

[18] MDN contributors. 2023. Evolution of HTTP. https://web.archive.org/web/

20230821100712/https://developer.mozilla .org/en- US/docs/Web/HTTP/

Basics_of_HTTP/Evolution_of_HTTP.

[19] [SW] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors,

Mitmproxy: A Free and Open Source Interactive HTTPS Proxy version 7.0.2,

2021. url: https://mitmproxy.org/.

[20] Dave Crocker and Paul Overell. 2008. Augmented BNF for Syntax Specifications:

ABNF. Request for Comments RFC 5234. Internet Engineering Task Force. doi:

10.17487/RFC5234.

[21] Martin Doyhenard. 2021. Response Smuggling: Pwning HTTP/1.1 Connections.

HITB+ CyberWeek 2021. https://cyberweek.ae/2021/presentations/response-

smuggling-pwning-http-1-1-connections/.

[22] Zakir Durumeric. 2023. Zakird/crux-top-lists: Downloadable snapshots of the

Chrome Top Million Websites pulled from public CrUX data in BigQuery.

https://github.com/zakird/crux-top-lists.

[23] [SW] Encode, HTTPX 2023. url: https://www.python-httpx.org/.

[24] Let’s Encrypt. 2023. Let’s Encrypt Stats. https://letsencrypt.org/stats/.

[25] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,

and Parisa Tabriz. 2017. Measuring HTTPS Adoption on the Web. In USENIX
Security Symposium. https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/felt.

[26] Roy T. Fielding, Henrik Nielsen, Jeffrey Mogul, Jim Gettys, and Tim Berners-

Lee. 1997. Hypertext Transfer Protocol – HTTP/1.1. Request for Comments

RFC 2068. Internet Engineering Task Force. doi: 10.17487/RFC2068.

https://github.com/cispa/http-conformance
https://github.com/cispa/http-conformance
https://github.com/0ang3el/websocket-smuggle
https://github.com/0ang3el/websocket-smuggle
https://arxiv.org/abs/1211.4812
https://hdl.handle.net/2142/11424
https://hdl.handle.net/2142/11424
https://doi.org/10.1109/spw54247.2022.9833883
https://doi.org/10.1145/1989748.1999945
https://doi.org/10.17487/RFC6265
https://doi.org/10.1109/sp.2009.3
https://doi.org/10.17487/RFC7540
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC2119
https://trends.builtwith.com/ssl/root-authority/traffic/Entire-Internet
https://doi.org/10.1007/978-3-030-78120-0_22
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://doi.org/10.17487/RFC1958
https://doi.org/10.1145/2976749.2978394
https://web.archive.org/web/20230821100712/https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://web.archive.org/web/20230821100712/https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://web.archive.org/web/20230821100712/https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://mitmproxy.org/
https://doi.org/10.17487/RFC5234
https://cyberweek.ae/2021/presentations/response-smuggling-pwning-http-1-1-connections/
https://cyberweek.ae/2021/presentations/response-smuggling-pwning-http-1-1-connections/
https://github.com/zakird/crux-top-lists
https://www.python-httpx.org/
https://letsencrypt.org/stats/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://doi.org/10.17487/RFC2068

ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore Jannis Rautenstrauch and Ben Stock

[27] Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP Semantics.

Request for Comments RFC 9110. Internet Engineering Task Force. doi: 10.

17487/RFC9110.

[28] Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP Semantics.

Official Internet Protocol Standards STD 97. Internet Engineering Task Force.

doi: 10.17487/RFC9110.

[29] Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP/1.1. Request

for Comments RFC 9112. Internet Engineering Task Force. doi: 10 . 17487/

RFC9112.

[30] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. Request for Comments RFC 7230.

Internet Engineering Task Force. doi: 10.17487/RFC7230.

[31] [SW] Apache Software Foundation, Apache HTTP Server 2023. url: https:

//github.com/apache/httpd.

[32] [SW] OpenJS Foundation, Node.Js 2023. url: https://github.com/nodejs/node/

tree/main.

[33] Gertjan Franken, Tom Van Goethem, Lieven Desmet, and Wouter Joosen. 2023.

A Bug’s Life: Analyzing the Lifecycle and Mitigation Process of Content Se-

curity Policy Bugs. In USENIX Security Symposium. https://www.usenix.org/

conference/usenixsecurity23/presentation/franken.

[34] Matthias Gierlings, Marcus Brinkmann, and Jörg Schwenk. 2023. Isolated and

Exhausted: Attacking Operating Systems via Site Isolation in the Browser. In

USENIX Security Symposium. https://www.usenix.org/conference/usenixsecuri

ty23/presentation/gierlings.

[35] Google. 2023. Chrome Platform Status. https://chromestatus.com/metrics/

feature/popularity.

[36] Google. 2014. HTTPS as a ranking signal. Google for Developers. https : / /

developers.google.com/search/blog/2014/08/https-as-ranking-signal.

[37] Mattias Grenfeldt, Asta Olofsson, Viktor Engström, and Robert Lagerström.

2021. Attacking Websites Using HTTP Request Smuggling: Empirical Test-

ing of Servers and Proxies. In IEEE International Enterprise Distributed Object
Computing Conference. doi: 10.1109/edoc52215.2021.00028.

[38] Florian Hantke and Ben Stock. 2022. HTML violations and where to find them:

a longitudinal analysis of specification violations in HTML. In ACM Internet
Measurement Conference. doi: 10.1145/3517745.3561437.

[39] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Ed-

ward Z. Yang. 2013. mXSS attacks: attacking well-secured web-applications

by using innerHTML mutations. In ACM SIGSAC Conference on Computer and
Communications Security. doi: 10.1145/2508859.2516723.

[40] Charlie Hothersall-Thomas, Sergio Maffeis, and Chris Novakovic. 2015.

BrowserAudit: automated testing of browser security features. In International
Symposium on Software Testing and Analysis. doi: 10.1145/2771783.2771789.

[41] Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi, Tommaso Innocenti, Kaan

Onarlioglu, and Engin Kirda. 2022. FRAMESHIFTER: Security Implications of

HTTP/2-to-HTTP/1 Conversion Anomalies. In USENIX Security Symposium.

https://www.usenix.org/conference/usenixsecurity22/presentation/jabiyev.

[42] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. 2021. T-

Reqs: HTTP Request Smuggling with Differential Fuzzing. In ACM SIGSAC
Conference on Computer and Communications Security. doi: 10.1145/3460120.
3485384.

[43] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis

Papadopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros Kapravelos.

2021. Towards Realistic and Reproducible Web Crawl Measurements. In The
Web Conference. doi: 10.1145/3442381.3450050.

[44] James Kettle. 2019. HTTP Desync Attacks: Request Smuggling Reborn.

PortSwigger Research. https://portswigger.net/research/http-desync-attacks-

request-smuggling-reborn.

[45] Sunwoo Kim, Young Min Kim, Jaewon Hur, Suhwan Song, Gwangmu Lee,

and Byoungyoung Lee. 2022. {FuzzOrigin}: Detecting {UXSS} vulnerabilities

in Browsers through Origin Fuzzing. In USENIX Security Symposium. https:

//www.usenix.org/conference/usenixsecurity22/presentation/kim.

[46] Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Noß, and

Jörg Schwenk. 2021. XSinator.com: From a Formal Model to the Automatic

Evaluation of Cross-Site Leaks in Web Browsers. In ACM SIGSAC Conference
on Computer and Communications Security. doi: 10.1145/3460120.3484739.

[47] Mike Kosek, Leo Blöcher, Jan Rüth, Torsten Zimmermann, and Oliver Hohlfeld.

2020. MUST, SHOULD, DON’T CARE: TCP Conformance in theWild. In Passive
and Active Measurement. doi: 10.1007/978-3-030-44081-7_8.

[48] Balachander Krishnamurthy, Martin Arlitt, T Labs, Hewlett-Packard Laborato-

ries, Park Avenue, and Florham Park. 2001. PRO-COW: Protocol Compliance on

the Web-A Longitudinal Study. In USITS. https://www.usenix.org/conference/
usits-01/pro-cow-protocol-compliance-web%E2%80%93-longitudinal-study.

[49] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis. 2019.

Time Does Not Heal All Wounds: A Longitudinal Analysis of Security-

Mechanism Support in Mobile Browsers. In Network and Distributed System
Security Symposium. doi: 10.14722/ndss.2019.23149.

[50] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and

Bruno Crispo. 2022. Web Cache Deception Escalates. In USENIX Security Sym-
posium. https://www.usenix.org/conference/usenixsecurity22/presentation/

mirheidari.

[51] Hoai Viet Nguyen, Luigi Lo Iacono, andHannes Federrath. 2019.Mind the cache:

large-scale explorative study of web caching. In ACM/SIGAPP Symposium on
Applied Computing. doi: 10.1145/3297280.3297526.

[52] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. 2019. Your Cache

Has Fallen: Cache-Poisoned Denial-of-Service Attack. In ACM SIGSAC Confer-
ence on Computer and Communications Security. doi: 10.1145/3319535.3354215.

[53] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. 2018. Systematic

Analysis of Web Browser Caches. In International Conference on Web Studies.
doi: 10.1145/3240431.3240443.

[54] Henrik Nielsen, Roy T. Fielding, and Tim Berners-Lee. 1996. Hypertext Transfer

Protocol – HTTP/1.0. Request for Comments RFC 1945. Internet Engineering

Task Force. doi: 10.17487/RFC1945.

[55] Henrik Nielsen, Jeffrey Mogul, Larry M. Masinter, Roy T. Fielding, Jim Get-

tys, Paul J. Leach, and Tim Berners-Lee. 1999. Hypertext Transfer Protocol –

HTTP/1.1. Request for Comments RFC 2616. Internet Engineering Task Force.

doi: 10.17487/RFC2616.

[56] Mark Nottingham. 2023. REDbot. https://redbot.org/.

[57] Jon Postel. 1980. DoD Standard Transmission Control Protocol. Request for

Comments RFC 761. Internet Engineering Task Force. doi: 10.17487/RFC0761.

[58] Jon Postel. 1981. Transmission Control Protocol. Request for Comments RFC

793. Internet Engineering Task Force. doi: 10.17487/RFC0793.

[59] Jannis Rautenstrauch, Giancarlo Pellegrino, and Ben Stock. 2023. The Leaky

Web: Automated Discovery of Cross-Site Information Leaks in Browsers and

the Web. In IEEE S&P. doi: 10.1109/sp46215.2023.10179311.

[60] [SW] Jannis Rautenstrauch and Ben Stock, HTTP Conformance Checker 2023.

url: https://github.com/cispa/http-conformance.

[61] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and

Ben Stock. 2020. Complex Security Policy? A Longitudinal Analysis of De-

ployed Content Security Policies. In Network and Distributed System Security
Symposium. doi: 10.14722/ndss.2020.23046.

[62] Sebastian Roth, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti, and Ben

Stock. 2022. The Security Lottery: Measuring Client-Side Web Security Incon-

sistencies. In USENIX Security Symposium. https://www.usenix.org/conference/

usenixsecurity22/presentation/roth.

[63] Vaspol Ruamviboonsuk. 2022. The 2022 Web Almanac: HTTP. 23. HTTP

Archive. https://almanac.httparchive.org/en/2022/http.

[64] Len Sassaman, Meredith L. Patterson, and Sergey Bratus. 2012. A Patch for

Postel’s Robustness Principle. IEEE Security & Privacy Magazine, 2. doi: 10.
1109/msp.2012.31.

[65] Kaiwen Shen, Jianyu Lu, Yaru Yang, Jianjun Chen, Mingming Zhang, Haixin

Duan, Jia Zhang, and Xiaofeng Zheng. 2022. HDiff: A Semi-automatic Frame-

work for Discovering Semantic Gap Attack in HTTP Implementations. In

IEEE/IFIP International Conference on Dependable Systems and Networks. doi:
10.1109/dsn53405.2022.00014.

[66] Hendrik Siewert, Martin Kretschmer, Marcus Niemietz, and Juraj Somorovsky.

2022. On the Security of Parsing Security-Relevant HTTP Headers in Modern

Browsers. In IEEE Security and Privacy Workshops. SecWeb. doi: 10 . 1109 /

spw54247.2022.9833880.

[67] Snyk. 2022. URL confusion vulnerabilities in the wild: Exploring parser incon-

sistencies. Snyk. https://snyk.io/blog/url-confusion-vulnerabilities/.

[68] Marco Squarcina, Pedro Adão, Lorenzo Veronese, and Matteo Maffei. 2023.

Cookie Crumbles: Breaking and Fixing Web Session Integrity. In USENIX
Security Symposium. https://www.usenix.org/conference/usenixsecurity23/

presentation/squarcina.

[69] Web Tech Survey. 2023. Website technology checker. Web Technology Survey.

https://webtechsurvey.com/.

[70] The Measurement Factory. 2018. Co-Advisor. https://web.archive.org/web/

20211202131011/http://coad.measurement-factory.com/.

[71] The Measurement Factory. 2001. HTTP Compliance and W3C QA. https :

//www.w3.org/2001/01/qa-ws/pp/alex-rousskov-measfact.html.

[72] Martin Thomson and Cory Benfield. 2022. HTTP/2. Request for Comments

RFC 9113. Internet Engineering Task Force. doi: 10.17487/RFC9113.

[73] Martin Thomson and David Schinazi. 2023. Maintaining Robust Protocols.

Request for Comments RFC 9413. Internet Engineering Task Force. doi: 10.

17487/RFC9413.

[74] W3C. 2023. Content Security Policy Level 3. Working Draft. https://www.w3.

org/TR/2023/WD-CSP3-20230220/.

[75] W3C. 2022. Upgrade Insecure Requests. Editor’s Draft. https://w3c.github.io/

webappsec-upgrade-insecure-requests/.

[76] W3C. 2012. UriTesting. https://www.w3.org/wiki/UriTesting.

[77] W3Techs. 2023. Usage Statistics and Market Share of Web Servers, May 2023.

https://w3techs.com/technologies/overview/web_server.

[78] Lukas Weichselbaum and Michele Spagnuolo. CSP-A Successful Mess Between

Hardening and Mitigation. (2020). https : / /static .sched.com/hosted_files/

https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9112
https://doi.org/10.17487/RFC9112
https://doi.org/10.17487/RFC7230
https://github.com/apache/httpd
https://github.com/apache/httpd
https://github.com/nodejs/node/tree/main
https://github.com/nodejs/node/tree/main
https://www.usenix.org/conference/usenixsecurity23/presentation/franken
https://www.usenix.org/conference/usenixsecurity23/presentation/franken
https://www.usenix.org/conference/usenixsecurity23/presentation/gierlings
https://www.usenix.org/conference/usenixsecurity23/presentation/gierlings
https://chromestatus.com/metrics/feature/popularity
https://chromestatus.com/metrics/feature/popularity
https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
https://developers.google.com/search/blog/2014/08/https-as-ranking-signal
https://doi.org/10.1109/edoc52215.2021.00028
https://doi.org/10.1145/3517745.3561437
https://doi.org/10.1145/2508859.2516723
https://doi.org/10.1145/2771783.2771789
https://www.usenix.org/conference/usenixsecurity22/presentation/jabiyev
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1145/3442381.3450050
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://www.usenix.org/conference/usenixsecurity22/presentation/kim
https://www.usenix.org/conference/usenixsecurity22/presentation/kim
https://doi.org/10.1145/3460120.3484739
https://doi.org/10.1007/978-3-030-44081-7_8
https://www.usenix.org/conference/usits-01/pro-cow-protocol-compliance-web%E2%80%93-longitudinal-study
https://www.usenix.org/conference/usits-01/pro-cow-protocol-compliance-web%E2%80%93-longitudinal-study
https://doi.org/10.14722/ndss.2019.23149
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://doi.org/10.1145/3297280.3297526
https://doi.org/10.1145/3319535.3354215
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.17487/RFC1945
https://doi.org/10.17487/RFC2616
https://redbot.org/
https://doi.org/10.17487/RFC0761
https://doi.org/10.17487/RFC0793
https://doi.org/10.1109/sp46215.2023.10179311
https://github.com/cispa/http-conformance
https://doi.org/10.14722/ndss.2020.23046
https://www.usenix.org/conference/usenixsecurity22/presentation/roth
https://www.usenix.org/conference/usenixsecurity22/presentation/roth
https://almanac.httparchive.org/en/2022/http
https://doi.org/10.1109/msp.2012.31
https://doi.org/10.1109/msp.2012.31
https://doi.org/10.1109/dsn53405.2022.00014
https://doi.org/10.1109/spw54247.2022.9833880
https://doi.org/10.1109/spw54247.2022.9833880
https://snyk.io/blog/url-confusion-vulnerabilities/
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://webtechsurvey.com/
https://web.archive.org/web/20211202131011/http://coad.measurement-factory.com/
https://web.archive.org/web/20211202131011/http://coad.measurement-factory.com/
https://www.w3.org/2001/01/qa-ws/pp/alex-rousskov-measfact.html
https://www.w3.org/2001/01/qa-ws/pp/alex-rousskov-measfact.html
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9413
https://doi.org/10.17487/RFC9413
https://www.w3.org/TR/2023/WD-CSP3-20230220/
https://www.w3.org/TR/2023/WD-CSP3-20230220/
https://w3c.github.io/webappsec-upgrade-insecure-requests/
https://w3c.github.io/webappsec-upgrade-insecure-requests/
https://www.w3.org/wiki/UriTesting
https://w3techs.com/technologies/overview/web_server
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf

Who’s Breaking the Rules? Studying Conformance to the HTTP Specifications and its Security Impact ACM ASIACCS 2024, July 1–5, 2024, Singapore, Singapore

locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%

20Hardening%20and%20Mitigation%20(1).pdf.

[79] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc.

2016. CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the

Future of Content Security Policy. In ACM SIGSAC Conference on Computer
and Communications Security. doi: 10.1145/2976749.2978363.

[80] WHATWG. 2023. Fetch Standard. https://fetch.spec.whatwg.org/commit-

snapshots/8f109835dcff90d19caed4b551a0da32d9d0f57e/.

[81] WHATWG. 2023. HTML Standard. https://html.spec.whatwg.org/commit-

snapshots/578def68a9735a1e36610a6789245ddfc13d24e0/.

[82] WHATWG. 2023. MIME Sniffing Standard. https://mimesniff .spec.whatwg.

org/.

[83] SeongilWi, Trung Tin Nguyen, Jiwhan Kim, Ben Stock, and Sooel Son. 2023. Dif-

fCSP: Finding Browser Bugs in Content Security Policy Enforcement through

Differential Testing. In Network and Distributed System Security Symposium.

https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_

f200_paper.pdf.

[84] WPT. 2023. Web-platform-tests documentation. https://web-platform-tests.

org/.

[85] WPT. 2023. Wptserve: Web Platform Test Server — web-platform-tests docu-

mentation. https://web-platform-tests.org/tools/wptserve/docs/.

[86] Yuchen Wu and Andrew Hauck. 2022. How we built Pingora, the proxy that

connects Cloudflare to the Internet. The Cloudflare Blog. http://blog.cloudflare.

com/how-we-built-pingora- the-proxy- that- connects- cloudflare- to- the-

internet/.

[87] Michal Zalewski. 2011. The Tangled Web: A Guide to Securing Modern Web
Applications.

A SERVER DETAILS AND ADDITIONAL
RESULTS

Table 5 shows all rules violated at least once in the wild and the

number of unique hosts. The explanation and test for each rule is

available online [60].

Table 6 shows the tested versions of each considered local server.

Type Rule Name #Hosts

Rec STS after UIR* 8,440

Rec Redirect after HTTP-UIR 7,822

Req Allow header present for 405 7,406

Rec HEAD and GET same headers 4,445

Rec Accept-Patch if PATCH supported 3,419

Rec Cookies use IMF-fixdate 2,850

Req Content-Length for HEAD=GET 2,272

Req Forbidden status-codes for POST 1,560

Req Same headers for 304 and 200 1,145

Req Date header required 663

ABNF Experies ABNF 657

Req STS not allowed for HTTP 550

Rec Duplicate cookie names 518

Req Duplicate headers 465

Rec Content-Type header required 290

ABNF XFO ABNF 262

Req Mandatory headers for 206 217

ABNF Etag ABNF 121

ABNF Set-Cookie ABNF 93

ABNF ACAO ABNF 83

Req Duplicate STS 82

Rec Duplicate CSP 71

ABNF Accept-Patch ABNF 68

Req WWW-Authenticate required for 401 63

Req Forbidden Content-Length for 1XX and 204 55

ABNF Last-Modified ABNF 52

Continued on the next column

Type Rule Name #Hosts

Req Forbidden surrounding whitespace for fields 51

ABNF Content-Type ABNF 48

Req Forbidden content for 304 46

ABNF Server ABNF 34

ABNF Date ABNF 30

ABNF ACAC ABNF 28

ABNF Vary ABNF 27

Req Content-Length for 304=200 27

ABNF CSP ABNF 23

Rec Cookies with duplicate attributes 22

ABNF Age ABNF 22

ABNF Cache-Control ABNF 21

ABNF Content-Language ABNF 20

ABNF ACAM ABNF 19

ABNF PermissionsPolicy ABNF 18

ABNF ACAH ABNF 18

ABNF STS ABNF 15

Rec Content-Range required for 416 10

ABNF XCTO ABNF 10

Rec Location required for 302 9

Rec Duplicate CSP-RO 7

Req Proxy-Authenticate required for 407 6

Rec Missing required headers for 415 6

ABNF COOP ABNF 6

ABNF Location ABNF 5

Rec Overly long Server header 5

ABNF CORP ABNF 3

ABNF Content-Length ABNF 3

ABNF ACMA ABNF 3

ABNF Allow ABNF 3

Rec Forbidden token form in no-cache directive 2

Rec Location required for 301 2

Rec Location required for 303 2

ABNF Connection ABNF 2

Rec Location required for 307 1

Req Upgrade required for 101 1

Req TE forbidden for non HTTP/1.1 responses 1

Req TE forbidden for 1XX and 204 1

Req Duplicate directives for STS 1

Req Content-Range required for 206 1

ABNF Range ABNF 1

ABNF COEP ABNF 1

Table 5: Number of unique violating hosts per rule (* only
applies to STS-safe hosts)

Server Version

Apache 2.4.55

Caddy 2.6.4

Jetty 11.0.13

Nginx 1.21.4-1

Node 18.14.2

OpenLiteSpeed 1.7.16

OpenResty 1.21.4-1

Tomcat 10.1.5

Traefik 2.9.8

Table 6: Tested Server Versions.

https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf
https://static.sched.com/hosted_files/locomocosec2019/db/CSP%20-%20A%20Successful%20Mess%20Between%20Hardening%20and%20Mitigation%20(1).pdf
https://doi.org/10.1145/2976749.2978363
https://fetch.spec.whatwg.org/commit-snapshots/8f109835dcff90d19caed4b551a0da32d9d0f57e/
https://fetch.spec.whatwg.org/commit-snapshots/8f109835dcff90d19caed4b551a0da32d9d0f57e/
https://html.spec.whatwg.org/commit-snapshots/578def68a9735a1e36610a6789245ddfc13d24e0/
https://html.spec.whatwg.org/commit-snapshots/578def68a9735a1e36610a6789245ddfc13d24e0/
https://mimesniff.spec.whatwg.org/
https://mimesniff.spec.whatwg.org/
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_f200_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_f200_paper.pdf
https://web-platform-tests.org/
https://web-platform-tests.org/
https://web-platform-tests.org/tools/wptserve/docs/
http://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
http://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/
http://blog.cloudflare.com/how-we-built-pingora-the-proxy-that-connects-cloudflare-to-the-internet/

	Abstract
	1 Introduction
	2 Background
	2.1 History of HTTP
	2.2 Request and Response Pattern
	2.3 HTTP Participants and Conformance
	2.4 (Security)-Issues of Nonconformity

	3 Methodology
	3.1 HTTP Specification(s) and Rules
	3.2 Testing Framework

	4 Evaluation
	4.1 Local Servers
	4.2 Popular and Long-Tail Hosts

	5 Security Impact
	5.1 HTTP(S) Issues
	5.2 Security-Related Headers
	5.3 HRS Primitives and Host of Troubles
	5.4 Additional Problematic HTTP Behavior

	6 Discussion
	6.1 Limitations
	6.2 Ethical Considerations
	6.3 Insights and Problematic Consequences
	6.4 Towards Better HTTP Conformance

	7 Related work
	8 Conclusion
	Acknowledgments
	A Server Details and Additional Results

