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Abstract
In the modern Web, security headers are of the utmost importance
for websites to provide protection against various attacks, such as
Cross-Site Scripting, Clickjacking, and Cross-Site Leaks. As each
security header uses a different syntax and has unique process-
ing rules, correctly implementing them is a complex task for both
browser and website developers. Inconsistency in browser behavior
related to security headers harms websites as their security depends
on their users’ browsers. At the same time, compatibility issues may
deter developers from deploying such headers in the first place.

In this work, we performed a differential evaluation of the se-
curity header parsing and enforcement behavior in desktop and
mobile browsers to uncover problematic browser differences. We
systematically ran 177,146 tests covering 16 security-relevant head-
ers multiple times in 16 browser configurations covering over 97%
of the browser engine market share. We identified 5,606 (3.16%)
tests that behave inconsistently across browsers. Our subsequent
analysis revealed 42 root causes, highlighting the prevalence of
implementation issues. 31 of these root causes were yet unknown
and resulted in 36 bug reports against the affected browsers and
specifications. Many of our reports have already resulted in fixes
improving web consistency and users’ security. To foster open sci-
ence and enable browser vendors to continuously test their security
header implementations, we open-source our test framework.

CCS Concepts
• Security and privacy → Browser security; Web protocol
security; • Software and its engineering→ Software testing
and debugging.
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1 Introduction
The Web is everywhere. Sadly, security was an afterthought, and
vulnerabilities are common. As millions of legacy servers and web-
sites exist, it is difficult for browser vendors to improve the default
security model as this would break existing functionality. Instead,
browsers introduced many opt-in security headers that websites
can use to improve their security. These security header mecha-
nisms are often complex. Web developers make mistakes and often
configure them incorrectly or insecurely [51, 42]. At the same time,
browser developers have trouble implementing the specifications
correctly and diverge from the specifications both by accident [55,
5, 19] and intentionally [4, 7, 17]. As a result of both misconfigured
headers and browser differences, websites are often not protected
adequately even though their developers think so.

Fortunately, differential testing makes it possible to compare
browsers and identify implementation differences without rely-
ing on the header specifications that are often ambiguous. In the
past, differential approaches discovered implementation and speci-
fication issues in individual headers such as X-Frame-Options and
Content-Security-Policy [9, 55, 45].

However, prior works [9, 55, 51] and testing suites [12, 27] pri-
marily focused on the correct enforcement of valid header config-
urations. As websites often use invalid and broken header config-
urations [45, 25, 41], it is essential to test the parsing behavior of
browsers for invalid headers as well.

Our research aims to answer whether security headers are parsed
and enforced correctly and consistently across variousweb browsers.
A seemingly natural way of approaching this is to rely on expected-
outcome tests such as those provided by WPT [12]. However, this
not only requires to have a comprehensive set of expected-outcome
tests, but more importantly also specifications that cover all po-
tential edge cases and are unambiguous. Since neither of the re-
quirements is given, we instead rely on differential testing. This not
only allows us to identify differences in browser implementations
(implying at least one of them is incorrect), but also to pinpoint
ambiguities in the specifications by investing the root causes of
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the observed differences. To that end, we create an extensive test
set with mutated responses for 16 security-related headers, result-
ing in a total number of 177,146 tests. We initially run the tests in
twelve browser configurations multiple times to ensure determin-
istic results, executing over eleven million test runs in total. We
then propose a new clustering approach based on outcome-browser
mappings, which enables us to reduce the discovered 4,432 differ-
ences to 38 root causes across four main categories. The results
show that browser differences within a browser engine are rare, but
differences between the three main browser engines (Blink, Gecko,
and WebKit) are common. While currently security headers are not
parsed and enforced consistently, we hope that thanks to our bug
reports to browser vendors and specifications and by open-sourcing
our test framework, users will soon experience more consistent
protections.

To demonstrate the versatility of our framework, we run it sev-
eral months later on the four most up-to-date browser configura-
tions, showcasing the ability to easily integrate our framework into
the release cycle of a browser vendor. In this process, we could
confirm that many of the fixes to our bug reports are complete but
also discovered four additional root causes causing new differences.

To sum up, we make the following contributions:
(1) We propose a methodology for differential testing of secu-

rity headers with parametrized tests using thousands of re-
sponses and various origin relations. (Section 4)

(2) We run our differential testing pipeline with 177,146 tests
for twelve features in 16 browser configurations. (Section 5)

(3) We identify 42 unique root causes resulting in 36 browser
and specification bug reports. (Section 7)

(4) We open-source our framework to foster open science and
enable browser vendors to continuously test their security
header implementations [40].

2 Background
In this section, we first explain the basics of HTTP and continue
with security features related to HTTP Headers.

2.1 HTTP and Response Headers
Figure 1 shows an HTTP request and response pair. A request con-
sists of a request-line (method, resource, and version), optional and
required headers (additional information about the request, e.g.,
cookies to authenticate), and an optional body (e.g., form submis-
sion content). A response has a status-line (200 OK, response was
successful), optional and required headers with metadata (e.g., the
content-type of the response body, or security headers to enforce
in the browser), and the actual response, e.g., HTML content.

The browser performs one request to the URL entered in the
URL bar, and then the server responds. The browser interprets the
response based on the metadata in the HTTP response headers, the
actual response body, and the context of the request. If the response
contains HTML, the browser renders the HTML, which might cause
additional requests to included resources. JavaScript on the page
can also perform additional requests, but the general process is
always a request to the server and a response to the browser.

2.1.1 Versions and Encodings. HTTP has different versions with
the same general semantics but different transport encoding and

GET /not-frameable/ HTTP/1.1
Host: secure.site

(a) HTTP/1.1 request

HTTP/1.1 200 OK
Date: Mon, 14 April 2025 23:59:59 AoE
Content-Length: 500
Content-Type: text/html
X-Frame-Options: DENY

(500 bytes of the requested web page)

(b) HTTP/1.1 response with XFO header

Figure 1: Example HTTP request and response pair.

protocols. HTTP/1.1 [16] is a plaintext protocol over TCP, and
HTTP/2 [48] is a binary protocol over TCP. HTTP/3 [6] is a binary
protocol over QUIC. This paper focuses on the semantics of HTTP
and uses HTTP/1.1 as the transport protocol, which has the least
strict parsing rules due to its age and being a plaintext protocol.

HTTP/1.1 is a plaintext protocol, which means it should be
readable by observing the traffic on the wire. The HTTP request-
line, status-line, and headers should contain ASCII text bytes only.
In contrast, the HTTP request and response bodies are arbitrary
bytes, which meaning is specified by the content-type and content-
encoding headers (e.g., a gzip-encoded body or an HTML body that
is UTF-8 encoded). However, the underlying TCP protocol ignores
the content of the message and allows arbitrary bytes everywhere.
Thus, HTTP processors need to decide how to deal with other bytes
when receiving HTTP responses. They often ignore the invalid
bytes or even allow UTF-8 in some headers.

2.1.2 HTTP Fields/Headers. The metadata in HTTP requests and
responses is specified in HTTP fields, colloquially called headers.
These headers can have a variety of use cases, such as informing the
receivers about the cacheability of the message or the content type.
This paper focuses on headers that activate or deactivate security
features in browsers. Headers have a name (case insensitive in
HTTP/1.1) and a value (separated by a colon in HTTP/1.1). The
values of headers are usually defined by augmented Backus-Naur
form grammars (ABNF) [14] or, for new headers, are defined as
Structured Fields [36]. Depending on the header, multiple values in
a list, or multiple instances of the same header may be allowed.

2.1.3 HTTP Parsing. Browsers have to parse the received HTTP
responses regardless of whether the messages are well-formed.
Due to their history of valuing functionality and pleasing users,
browsers are error-tolerant for the received content. For example,
they try to parse invalid HTML [24] and guess the content type via
MIME sniffing [54]. They also deal with invalid responses on the
header and status-line levels. They must decide what to do if they
receive several headers with the same name, unspecified values, or
headers using disallowed bytes. They can use the specified ABNFs
for the values, parsing algorithms, or self-created ad-hoc logic. If
browser parsing behavior diverges, it can lead to a feature being
active in some browsers and not in others which can be disastrous
in the case of security headers such as CSP.
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2.2 Security Features in Browsers
Browsers are in a constant tension between security and function-
ality. They want to enable users to surf safely online and introduce
many new security features to achieve this. However, some secu-
rity improvements could break existing websites. For example, if
browsers only allowed secure HTTP connections (HTTPS), this
would significantly reduce the impact of network attacks. However,
it would also break legacy websites that do not support HTTPS.
To still allow websites better security, browsers introduce security
headers that websites can set to opt-in to new defenses. The follow-
ing explains three security issues that such headers can mitigate.

2.2.1 Frame Control and Clickjacking. A fundamental aspect of the
Web is to include other websites using iframes. As these frames can
be styled transparently and overlayed by other content, it is possible
to trick users into performing actions on embedded sites, such as
liking a page or deleting an account, without the user noticing.
These attacks are called Clickjacking attacks [23]. One way to stop
such attacks is to disallow the framing of a response. Websites can
set the X-Frame-Options (XFO) header [53] to deny framing for all
sites or all cross-origin sites. Alternatively, the Content-Security-
Policy (CSP) header’s frame-ancestors directive [50] allows for more
fine-grained control about who can frame a response.

2.2.2 XSS Mitigation and Script Control. The most prominent web
security issue is called Cross-Site Scripting (XSS) [22], where unau-
thorized script content is injected into a page and executed in the
context of the page. While this attack has been known for over
20 years [32], and many defenses and countermeasures have been
proposed, it is still one of the leading threats to websites. One miti-
gation technique is the Content-Security-Policy (CSP) [49], initially
designed to restrict script content on a site and now allows the
control of many features. The script-src directive controls where
scripts can be loaded from and, by default, disallows inline scripts,
making XSS harder to exploit.

2.2.3 HTTPS Enforcement. Another big issue on the Web are inse-
cure HTTP connections. While most mixed content is nowadays
blocked by default, top-level connections to HTTP are problem-
atic as they are allowed (some sites only support HTTP) and can
be manipulated in transit. The main option for a site to ensure to
always be loaded via HTTPS is HTTP Strict Transport Security
(HSTS) [26]. A site can set the Strict Transport Security header with
a max-age attribute, and all following connections to this site will
be performed via HTTPS for the specified time. In addition, there
is a preload list of sites always loaded via HTTPS [47].

3 Key Ideas
Security headers control crucial security features in browsers. For
example, the X-Frame-Options (XFO) header can be used to dis-
allow the embedding of a URL into an iframe, object, or embed,
protecting the URL from clickjacking attacks. The browser parses
the XFO header and decides whether to allow the embedding based
on the content of the header, the origin of the embedded URL, and
the origins of all ancestors. For meaningful protection, all browsers
should offer the same consistent level of protection; otherwise, the
security of a website depends on the visitor’s browser that could
differ from the browsers tested by the web developers.

3.1 Parsing Challenges
Parsing security headers is notoriously tricky, specifications are
often complex, potentially resulting in differences across browsers.
For example, at the time of writing, Chrome allows whitespace
between header names and the colon, whereas Safari and Fire-
fox consider such headers to be invalid. Additionally, only Firefox
redirected responses with status code 300 until recently. These
differences can be caused by unintended implementation mistakes,
intentional design choices, or something in between, e.g., the speci-
fication is unclear, and the developers had to implement something.
Most importantly, such differences are problematic as they often re-
duce security (e.g., an XFO header that only protects visitors using
Firefox and leaves users of other browsers unprotected) and pose
compatibility issues. Thus, it is crucial to discover and fix browser
differences related to security headers.

3.2 Differential Testing
While frameworks such as web-platform-tests (WPT) [12] exist to
check that browser implementations follow the specifications and
are compatible with each other, they have fundamental shortcom-
ings in the area of security headers. Their tests have to specify the
correct outcome and thus can only test well-defined behavior. Ad-
ditionally, their tests and responses are hand-crafted, focusing on
the correct behavior for a small set of responses instead of testing
the full range of responses, missing many potential differences.

Writing a comprehensive test suite that covers the expected out-
comes for all edge cases is difficult. Even the experts implementing
these features in browsers fail to do so even though they write many
WPT tests with expected outcomes in parallel with their implemen-
tation. With differential testing, one does not need to understand
the complex specifications; instead, one only needs to reactively
understand the correct outcome for the discovered difference. If
the correct outcome is unclear, one can still report the ambiguity
in the specification, including the current behavior of browsers.
Thus, we decided to use a differential testing approach visualized
in Figure 2. For testing a feature such as XFO, we create a test page
recording whether a resource embedding was successful without
specifying the correct behavior. We then visit the test page with
thousands of generated response resources in various browsers
and compare the recorded outcomes across the browsers. In this
example, only Firefox blocks cross-origin framing for an XFO value
of SAME ORIGIN whereas users of Chrome are not protected from
clickjacking attacks as the invalid value is ignored and the page
renders. Each discovered difference indicates a potential problem.
By clustering the recorded differences and performing a manual
root cause analysis, we estimate each root cause’s impact and re-
port them to browser developers. Here, we discovered that Firefox
incorrectly removed whitespace from anywhere within an XFO
header instead of only stripping leading and trailing space [38].

3.3 Threat Model
When building or updating their website’s code, developers need
to rely on their own browser to test new functionality and secu-
rity mechanisms. Thus, it is paramount that irrespective of the
used browsers, the developer observes the same security (or lack
thereof) as any visitor of the site will. Hence, for our threat model
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Recorded Test Run Results:

Framing Tests

https://sub.headers.project

Page Loaded!

https://sub.headers.project/framing/?response=42&ti

https://headers.project

Page Loaded!

Framing Tests

https://sub.headers.project/framing/?response=42&ti

https://headers.project

Firefox Can't Open This Page

https://sub.headers.project

Page Loaded!

Any Origin Custom Server

Database Server

Response 42 for <origin>:

HTTP/1.1 200 OK
X-Frame-Options: SAME ORIGIN

Assets

Test Function Browser Origin Response Outcome

iframe-direct Chrome same-origin 42 Load

iframe-direct Chrome same-site 42 Load

iframe-direct Firefox same-origin 42 Load

iframe-direct Firefox same-site 42 No Message

Figure 2: Differential testing framework showing a difference in XFO parsing between Chrome and Firefox.

we consider developers using one browser and deploying security
header configurations that, due to browser inconsistencies only
work in some browsers, thus unknowingly leaving many users
unprotected.

4 Methodology
This section explains how we detect and analyze browser differ-
ences in security header implementations. We start with an illus-
trative example and then detail our header selection, test function
creation, and response creation process. Finally, we describe how
we analyze the obtained data.

4.1 Example and Terminology
Figure 2 shows an example execution of our differential testing
infrastructure for two framing tests in Chrome and Firefox. Both
browsers open the same URL pointing to our test server, which
executes two tests: one frames a same-origin URL and another a
same-site URL; both URLs contain response ID 42 in a GET param-
eter. The framed URL responds with an X-Frame-Options header of
SAME ORIGIN, which is not a valid value according to the specifica-
tions [53]. Chrome ignores the header with the invalid value and
both frames load. Firefox ignores the space, interprets the value as
SAMEORIGIN, and thus blocks the cross-origin frame. The frames
that are successfully loaded send a message to the top-level page.
The page then sends the recorded outcomes to our database server.

In the above example, we visit the template page for framing.
There is one template page for each considered feature. The con-
crete settings are specified via URL parameters. Each template page
implements one or more test functions. These JavaScript functions
perform specific actions and, ultimately, report an outcome. In

our example, the test function is called Framing/iframe direct
and creates an iframe with a given URL and records whether the
iframe loads successfully. The framed resource URLs look like
https://<origin>/framed-response/?response=<id>. In our example,
the origin relation (𝑂𝑅) to the top-level page is either same-origin or
same-site. The response (𝑅) has ID 42. This response has status code
200 and an X-Frame-Options header with the value SAME ORIGIN.
The body of the page sends a postMessage to the parent. Formally,
we call the instantiation of a test function (𝑇𝐹 ) with an origin rela-
tion and a concrete response a test: 𝑇 = (𝑇𝐹,𝑂𝑅, 𝑅). The execution
of a test in a concrete browser (𝐵) is then called test run:𝑇𝑅 = (𝑇, 𝐵).

4.2 Header Selection Process
We want to test HTTP response headers that control privacy and
security features in browsers. The behavior of the header should be
documented by an official web specification group such as the Web
Hypertext Application Technology Working Group (WHATWG),
the World Wide Web Consortium (W3C), or the Internet Engineer-
ing Task Force (IETF). However, it can be a working draft as many
specifications only ever reach official standard status years after
they are implemented in browsers.

We startedwith the list of security headers onMDNWebDocs [33],
removed any headers that did not fulfill our criteria, and added
security-relevant headers, missing from the MDN list, based on our
expert knowledge. We describe the complete list of tested headers
in Section 5.2.

4.3 Test Function Creation
We considered each selected header’s purpose, abstracted it to a
feature, and created a template page. For example, the XFO header is
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responsible for Framing-Control, which can be tested via a Framing
test. Some headers, such as CSP, can have multiple purposes, and
we created several template pages for them. We reuse the same
template page if two headers control the same feature (e.g., XFO
and CSP frame-ancestors both are responsible framing-control).

For each feature, we created one or several test functions. For
example, for framing, we frame a URL as either iframe, object, or
embed and optionally enable the sandbox directive. In addition, we
use different origin relations: same-origin, cross-origin same-site,
and cross-site. Such tests are required to assess whether the whole
ancestor chain is considered or only the parent.

To write the test functions, we build on the Web Platform Test
project’s testharness.js framework [10], which we adapt to our
needs. In the default test harness, the correct behavior must be
defined up front, and the test either passes or fails. We change
testharness.js to record an outcome, such as framing worked or
failed, and always pass the test if any outcome was successfully
saved such that we can perform pure differential testing. In addi-
tion, we adapted the WPT infrastructure to allow sending arbitrary
bytes everywhere in the responses and have a URL parameter that
selectively turns off HTTPS support to test for mixed content issues.

4.4 Response Generation
We aim to cover the browsers’ header parsing and enforcement
code as comprehensively as possible. Thus, in addition to creat-
ing complex test functions and using multiple origin relations, we
require a large set of responses.

For each header, we create one blocking and one non-blocking
response. For example, DENY to activate XFO and disallow framing
and INVALID which should not activate XFO. In addition, we cre-
ate responses to test for more complex behavior: a response that
redirects to test whether the redirect or the security header takes
precedence, a response with an empty header to check for the de-
fault behavior, and other well-specified values such as SAMEORIGIN
for XFO. We call these initially created responses basic responses.

The basic responses are helpful to test for general browser dif-
ferences, such as differences in HTTP upgrades, and for header-
specific enforcement differences, such as a browser not considering
the entire ancestor chain. However, they are unsuitable for detect-
ing subtle differences in the parsing process. Thus, we create a
second, more extensive set of responses called parsing responses.

For each header, we use seed values from WPT [11], Siewert
et al. [45], crawler.ninja [25], and the headers specifications,. We
group the seed values into block, allow, partial, legacy, and other
categories. In addition, we collect legacy and alternative header
names such as X-WebKit-CSP for Content-Security-Policy.

We then combine these seed values with various status codes, use
duplicate headers or multiple values in the same header, and mutate
the names and values to generate our complete set of responses.
We use the following mutations: we change the casing (all-upper,
all-lower, random-case); we enclose the value in spaces, double
quotes, and single quotes; we remove all spaces, double all spaces,
or convert all spaces to tabs; we insert characters (all ASCII bytes
including control characters, double space, non-breaking space,
and full-width comma) at the beginning, the end, or the middle of
the string; we replace all instances of a semicolon, comma, colon,

equal sign, single quotation mark, double quotation mark, dash,
and underscore with all other values, remove them, or replace them
with a space, a backtick, a tick, or eight different UTF-8 quotation
mark symbols. We chose these mutations to cover common typos
and confusion with other headers. The complete list of mutations
is available in our repository [40].

4.5 Root Cause Analysis Process
The above described testing pipeline allows us to run millions of
tests and record thousands of differences. However, analyzing every
detected difference individually is inefficient, as many differences
have the same underlying root cause.

Consider the example from Figure 2. Firefox blocked cross-origin
framing for X-Frame-Options: SAME ORIGIN whereas Chrome
allowed it. The same difference is also visible for DE NY and D\tENY.
The underlying root cause is that Firefox removes whitespace from
anywhere within an XFO value instead of only stripping leading
and trailing whitespace as required by the specifications.

4.5.1 Outcome-Browser Mapping Clustering. We perform an ini-
tial clustering step, grouping tests that are similar. For each test
function, we cluster the tests by the mapping of recorded outcomes
to browsers. For example the test function iframe-direct can have
two outcomes Message received and No message. A first cluster,
containing 80 tests, could have the mapping Message received:
{Chrome, Safari}, No message: {Firefox}. A second cluster,
containing 128 tests, could have the mapping Message received:
{Firefox, Safari}, No message: {Chrome}.

We then use a manual analysis step to identify the semantic sim-
ilarities between the tests in a cluster and to decide which browsers
are wrong and whether they intentionally behave differently. We
also sample the tests and verify the recorded outcomes to confirm
that our results are correct.

For example, in the above example, the first cluster could con-
tain responses with XFO headers with spaces such as DE NY and
SAME ORIGIN that only result in blocking the frame in Firefox re-
sulting in no message being send. The second cluster could contain
header names that contain a NULL byte, such as X-Frame\x00-
Options: DENY where Chrome blocks the entire response, and
Firefox and Safari only ignore the invalid header.

After identifying the root cause of a difference, we name it and
note down all details. Then, we search the specifications for the
correct behavior and look for bug reports and browser documenta-
tion to decide which browser is wrong, if there is an issue with the
specification, and whether it is already known. If it is not already
known, we create a bug report against the affected browsers or the
specifications. Lastly, we reason about the potential consequences
of the detected root cause and classify it as mainly affecting security,
privacy, or compatibility.

4.5.2 Comparing Browser Updates. After the root cause analysis
has been done once, there is an easier way to check for expected and
unexpected browser changes in new versions. Instead of comparing
all tested browsers, it is possible to compare only two browser
configurations, for example, Chrome version 122 and Chrome 131.
Here, it is possible to quickly glance at the clusters and see whether
the differences between the versions are due to known changes
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or unrelated changes that might be new root causes. Additionally,
it is possible to only look at all the tests that result in a unique
outcome in a single browser configuration. Unique outcomes mean
the browser’s behavior changed but is still not aligned with other
browsers, hinting at incomplete fixes or new root causes.

5 Experimental Settings
Based on our above-described methodology, we instantiated our
test infrastructure with 16 browsers, twelve features, and 177,146
tests, as described in the following.

5.1 Tested Browsers
Our goal is to find differences in browsers used in the real world. As
of 2025, there are only three main browser engines available, which
all major browsers are built on top of: Blink (used in Chrome, Brave,
Edge, and many more), Gecko (used in Firefox and Tor), andWebKit
(used in Safari and iOS browsers) [35]. According to StatCounter,
the market share of these three engines is over 97%, and the market
share of Chrome, Firefox, and Safari alone is over 86% [46].

Table 1 shows the browser configurations we tested for this paper.
We expect most of the security header parsing and enforcement
code to be deep in the browser engine code, usually untouched by
derivatives of these engines. Thus, we tested each engine’s flagship
browser in its most stable version as of February 2, 2024: Chrome
121, Firefox 122, and Safari 17.3.1. During our initial pre-studies, we
discovered no differences between the macOS and Linux browser
versions regarding our tests, and we expect the same to hold for
Windows. Thus, we decided to run Chrome and Firefox on Linux,
where we can efficiently parallelize browser instances on our Linux
cluster. Additionally, our tests behaved identically in the headless
and the headful modes of browsers. Thus, we decided only to use
headless versions if available, as they run more reliably in parallel.

To investigate whether security header parsing code is currently
under development, we also tested the prior and following versions
of Chrome and Firefox. We only tested a single version for Safari
(17.3.1) as the version is bound to the operating system.

In addition to the three flagship browsers, we test Brave (Blink-
derivative). This derivative explicitly states that it changes the core
browser engine code to provide better security and privacy [7]. We
also used Edge and other Blink derivatives during initial testing but
could not discover any differences between them and Chrome, so
we dropped them from the final runs.

As mobile browsers might behave differently due to performance
optimizations, we test the same browsers on mobile. However,
Firefox on Android users cannot permanently allow pop-ups. Thus,
we instead tested the same version of Firefox Beta, where we could
disable pop-up blocking, which is necessary to run our tests in
an automated manner. A similar issue occurs on iPadOS, where
one cannot disable manual pop-up verification in Safari. Thus, we
instead tested Chrome, as all browsers on iPadOS use the underlying
system WebKit [2].1

5.1.1 Updated Browsers. We rerun our framework several months
later on the newest browser versions as of January 6, 2025: Chrome
131, Brave v1.73, Firefox 133, and Safari 18.2. We only rerun our
1Recently (iOS 17.4) Apple allowed alternative browser engines in Europe [3]. However,
none is available as of August 2025.

Operating System Browser Versions

Ubuntu 22.04 Chrome (?) 120, 121, 122, 131
Firefox (�) 121, 122, 123, 133
Brave ( ) v1.62.156 (Chromium 121), v1.73.101 (Chromium 131)

Android 11 Chrome (?) 121
Firefox Beta (�) 123
Brave ( ) v1.62.165 (Chromium 121)

macOS 14.3.1 Safari (K) 17.3.1
macOS 15.2 Safari (K) 18.2

iPadOS 17.3.1 Chrome (?) 122 (WebKit 17.3.1)

Table 1: List of tested browser configurations.

framework on the desktop browsers as our prior results showed
only minor variations between the mobile and desktop versions of
the browsers. We performed this rerun to verify whether the fixes
implemented in response to our bug reports are complete and to
highlight that browser vendors could easily use the framework as
part of their continuous integration system.

5.2 Tested Features
Our methodology can be used to test any header. For this work,
we implemented test functions for the eight non-legacy security
response headers from MDN [33]. Additionally, we implemented
test functions for the five CORS headers, Timing-Allow-Origin,
and Referrer-Policy, which are related to privacy and security but
are not listed in the security section on MDN. Lastly, we added
the Feature-Policy header, the precursor of the Permission-Policy
header. From these 16 headers, we infer twelve features for which
we created test functions (see Table 2 for a list of headers, features,
and test functions and the number of corresponding tests).

The tested security headers can depend on the origin relations
of the involved responses. An origin relation describes the relation
between the origin of the top-level context A and the origin of the
subsequent context B. All our test functions use one of the following
inclusion chains: 𝐴 → 𝐵, 𝐴 → 𝐵 → 𝐴, 𝐴 → 𝐵 → 𝐴 → 𝐴. We test
same-origin, same-site, and cross-site origin relations. For same-
site relations, we include both a child and a parent domain to test
headers such as CSP: frame-ancestors *.project. All tested
domains are used with both HTTP and HTTPS.

Table 2 shows the implemented test functions and the number of
tests that belong to them. We have a total of twelve features and 33
test functions. For example, the test function Script Execution
(CSP)/Iframe sandbox tests the CSP script-control functionality
by evaluating whether scripts are allowed to execute in a sandboxed
iframe that responds with the specified CSP header. When execut-
ing the test functions, they also require a concrete response and an
origin relation. The created responses are specific to each feature.
We created a total of 188 basic responses and 43,416 parsing re-
sponses. By instantiating each test function with the corresponding
responses and all origin relations, we create 9,992 basic response
tests and 167,154 parsing response tests.

As we generated thousands of responses and running each test
function for each origin relation and response would be too costly,
we only run all test functions and origin relations for the basic
responses. For the parsing responses, we aim to find header parsing-
related differences. Thus, we only run a subset of the test functions.
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Feature (Headers) Test Function Basic Re- Parsing Re-
sponse Tests sponse Tests

Fetch-CORS GET simple 96 16,118
(Access-Control-, -AO, GET custom headers 96 16,118
-AC, -AM, -AH, -EH) GET credentials 96 16,118

TEST custom method 96 16,118
Framing (XFO, CSP) Iframe direct 560 17,560

Object direct 560 -
Embed direct 560 -
Iframe sandbox 560 -
Object sandbox 560 -
Embed sandbox 560 -
Iframe nested 560 17,560
Object nested 560 -
Embed nested 560 -

MIME Sniffing (XCTO) Script direct 208 1,778
Permissions: FullscreenAPI Iframe direct 384 7,760
(PP, FP) Iframe child 384 -

Iframe child allow 384 7,760
Iframe child sandbox 384 -

PerformanceAPI (TAO) IMG direct 208 3,202
Referrer Access (RP) Iframe 256 5,594

Window.Open 256 -
Script Execution (CSP) Iframe direct 272 5,452

Iframe sandbox 272 -
Subresourceloading (COEP) IMG direct 176 5,274

IMG sandbox 176 -
Subresourceloading (CORP) IMG direct 176 6,714

IMG sandbox 176 -
IMG nested 176 -
Object direct 176 -

Subresourceloading (CSP) IMG direct 272 5,420
Upgrade (HSTS) Direct 28 6,648

Subdomain 28 6,648
Window References (COOP) Window.Open 176 5,312
Total 9,992 167,154

Table 2: List of features and headers with corresponding test
functions and their number of basic and parsing tests.

For example, we expect parsing of the XFO header to be indepen-
dent of whether the resource is framed as iframe or object, as
there is only one network parser that passes the parsed headers
to the browser process. Thus, we only use iframe for the parsing
responses. The basic responses already cover enforcement issues
such as XFO not correctly applied for object.

5.3 Test Run Infrastructure and Settings
Running thousands of tests on various operating systems and
browsers requires a robust infrastructure. We used an iterative
design process to develop the test run infrastructure and determine
the adequate test settings. Based on preliminary tests, we deter-
mined test page timeouts of five seconds for seven features and ten
seconds for five features that require more processing time. This
timeout proves a good compromise in that all tests are executed
without waiting too long. For Android, we used doubled timeouts
as the emulators introduced additional delays.

We require an HTTP server to serve invalid responses and tem-
plate pages at all the specified origins. For that, we use a modified
wptserve HTTP server [13]. Additionally, we require test runners

to navigate to the test URLs on Ubuntu, macOS, Android, and iPa-
dOS. We implement the test runners using Selenium for Ubuntu
and macOS. On Android, we use a custom script that uses the
Android Intent framework to open our test pages in the corre-
sponding browsers. On iPadOS, we manually visit one coordinator
website that executes all the tests in new tabs using window.open.
In addition, we restart the browsers from time to time (e.g., after
a maximum of 100 test URLs on Ubuntu) and monitor for errors
while running many browsers in parallel.

It could be that two runs of the same test in the same browser
do not result in the same outcome due to either noise in the test
infrastructure (e.g., a timeout) or a test being inherently indeter-
ministic. We visited each test page five times to detect such issues
and perform a stability analysis. After each test URL is visited five
times, we determine which tests do not have five outcomes (e.g.,
due to crashes in the test infrastructure) and restart them until each
test has at least five outcomes in all browsers.

The tests on Ubuntu were performed on one x86_64 server with
192 CPUs. Identical servers were used to run the test on Android
Emulators using Android Virtual Devices (AVD) and the Android
Debug Bridge (ADB). The tests for macOS were performed on two
MacBooks and one iMac, and the tests for iPadOS on two iPads.

6 Evaluation
Here, we present our framework’s test run statistics and stabil-
ity analysis. We present the numbers of the first run with twelve
browser configurations and the second run with four browser con-
figurations together, as the only difference were the used browsers.

6.1 Test Run Statistics
Each of the 177,146 tests was executed at least five times, and
we collected between 885,730 and 1,558,656 test entries for each
browser for a total of 15,010,037 test entries.

For two reasons, we collected more than the minimum number
of 885,730 test results in some browsers. First, as we used intents to
open URLs on Android, we cannot close the test page after execu-
tion; sometimes, the browser would re-execute an already finished
test pagewhen receiving a new intent, resulting in additional results.
Second, when repeating missing tests, we revisited the original test
page. During that, we also re-executed tests that already had re-
sults. As we perform majority voting, the exact number of collected
outcomes for a test does not matter as long as it is high enough to
identify that a test has stable results.

Only 134 test runs (<0.01%) were aborted, and another 28 test
runs did not even start due to hitting the test page timeout before
being executed. These low numbers show that the chosen test page
timeout is adequate. Our test page runners start the following test as
soon as the prior test is finished and only wait until the page timeout
if necessary. Executing the basic response tests on Ubuntu with
one parallel browser instance once takes approximately 40 minutes,
and the parsing response tests take around 25 hours. Running all
tests five times in all browsers using 50 parallel browser instances
takes less than a day for Ubuntu and Android. For Safari, it is only
possible to automate a single instance per device at a time. Thus,
the tests on macOS and iPadOS are limited by the number of devices
available, and it took us around one workweek to collect all results.

https://fetch.spec.whatwg.org/#http-access-control-allow-origin
https://fetch.spec.whatwg.org/#http-access-control-allow-credentials
https://fetch.spec.whatwg.org/#http-access-control-allow-methods
https://fetch.spec.whatwg.org/#http-access-control-allow-headers
https://fetch.spec.whatwg.org/#http-access-control-expose-headers
https://html.spec.whatwg.org/#the-x-frame-options-header
https://w3c.github.io/webappsec-csp/#csp-header
https://fetch.spec.whatwg.org/#x-content-type-options-header
https://w3c.github.io/webappsec-permissions-policy/#permissions-policy-http-header-field
https://www.w3.org/TR/2019/WD-feature-policy-1-20190416/#feature-policy-http-header-field
https://w3c.github.io/resource-timing/#sec-timing-allow-origin
https://w3c.github.io/webappsec-referrer-policy/#referrer-policy-header
https://w3c.github.io/webappsec-csp/#csp-header
https://html.spec.whatwg.org/multipage/browsers.html#cross-origin-embedder-policy
https://fetch.spec.whatwg.org/#http-cross-origin-resource-policy
https://w3c.github.io/webappsec-csp/#csp-header
https://www.rfc-editor.org/rfc/rfc6797#section-6.1
https://html.spec.whatwg.org/multipage/browsers.html#the-coop-headers
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Android Ubuntu iPadOS macOS
Brave Chrome Firefox Beta Brave Brave Chrome Chrome Chrome Firefox Firefox Chrome Safari Safari

1.62.165 121 123 1.62.156 1.73.101 120 121-122 131 121-123 133 122/17.3.1 17.3.1 18.2
Android Brave (1.62.165) - 88 2854 18 304 122 106 392 2868 2785 2525 2570 4011
Android Chrome (121) 88 - 2917 106 392 34 18 304 2931 2849 2589 2634 4074
Android Firefox Beta (123) 2854 2917 - 2872 2588 2951 2935 2651 14 127 2683 2626 3275
Ubuntu Brave (1.62.156) 18 106 2872 - 286 104 88 374 2858 2791 2531 2584 4029
Ubuntu Brave (1.73.101) 304 392 2588 286 - 390 374 88 2574 2507 2701 2754 3749
Ubuntu Chrome (120) 122 34 2951 104 390 - 16 302 2937 2871 2611 2664 4108
Ubuntu Chrome (121-122) 106 18 2935 88 374 16 - 286 2921 2855 2595 2648 4092
Ubuntu Chrome (131) 392 304 2651 374 88 302 286 - 2637 2571 2765 2818 3812
Ubuntu Firefox (121-123) 2868 2931 14 2858 2574 2937 2921 2637 - 129 2685 2636 3289
Ubuntu Firefox (133) 2785 2849 127 2791 2507 2871 2855 2571 129 - 2598 2567 3214
iPadOS Chrome (122/17.3.1) 2525 2589 2683 2531 2701 2611 2595 2765 2685 2598 - 61 1754
macOS Safari (17.3.1) 2570 2634 2626 2584 2754 2664 2648 2818 2636 2567 61 - 1799
macOS Safari (18.2) 4011 4074 3275 4029 3749 4108 4092 3812 3289 3214 1754 1799 -

Table 3: Pairwise comparison matrix showing the number of tests with different outcomes between all browsers excluding the
test functions Referrer Access/Window.Open and Subresourceloading (COEP)/IMG direct.

6.2 Stability Analysis and Majority Voting
An important factor for the analysis of the outcomes is their sta-
bility. Do the outcomes of a test change due to noise in the test
infrastructure or indeterministic behavior in the browser?

Across all repetitions, we only observed 2,074 tests (0.07%) with
more than one outcome in one browser. This low percentage high-
lights our test infrastructure’s robustness and our tests’ determinis-
tic nature. The vast majority of the non-unanimous tests are due
to one indeterministic behavior on Firefox for CORP related to
caching: up to 26.99% of tests have differing results for the test
function Subresourceloading (COEP)/IMG direct.

We performed majority voting to ensure that only a single out-
come for each test in each browser exists. Because most tests with
more than one result had a one/four split, it is unlikely that much
noise entered our results as it is unlikely that the wrong outcome
was recorded in the majority of runs.

Later, during the manual analysis, we verified each discovered
cluster. During this process we discovered a total of eleven tests
(<0.01%, 10xCOOP, 1x HSTS) which recorded incorrect outcomes,
and we changed the reported results to the ones manually verified.
Additionally, we encountered the non-deterministic behavior in
Firefox for Subresourceloading (COEP)/IMG direct and unsta-
ble behavior in our test infrastructure due to the HTTP Upgrade fea-
ture in Blink-based browsers for Referrer Access/Window.Open.

7 Browser Differences and Root Causes
Our goal was to find differences in security header parsing and
enforcement across browsers. Many of our tests use responses that
are luckily treated equally in all browsers. However, still a total of
5,606 tests (3.16%) had more than one outcome when comparing all
16 browsers configurations. There were two different outcomes for
5,485 tests, and we observed three different outcomes for 121 tests.

7.1 Test Differences
We could discover browser differences for 30 out of our 33 test func-
tions. Table 3 shows the pairwise number of differences for 28 of
the 30. We had to remove the two test functions Referrer Access/
Window.Open and Subresourceloading (COEP)/IMG direct from

the Table to make it easier to digest. There was some noise for the
former due to the automatic upgrade-to-HTTPS functionality in
Chromium-based browsers. This noise led to unstable results that
we could not verify even after majority voting. The latter is inher-
ently unstable on Firefox and thus would show random differences
between the various tested Firefox versions, cluttering the Table.

When taking the bigger picture of Table 3 into account, we see a
large difference between the three engines (e.g., 2,917 differences
between Android Chrome (121) and Android Firefox Beta (123))
and only minor differences between the browser configurations of
an engine (e.g., 106 differences between Android Chrome (121) and
Ubuntu Brave (1.62.156)), with the exception of Safari 18, which had
major changes in header parsing behavior compared to Safari 17.

These results indicate that code related to header parsing is not
platform-, nor browser-specific but is integrated into the engine.
They also show that the code is not under active development and
that results are largely stable across versions.

7.2 Differences Root Cause Analysis
We analyzed all the differences to find their root causes. For the
initial run of twelve browser configurations, we clustered the out-
comes for each of the 30 test functions that had different outcomes
using the output-browser mapping. This mapping groups all tests
with the same outcomes for the same browsers. The minimum
number of clusters for a test function was one (e.g., Subresource-
loading (COEP)/IMG sandbox), and the maximum was 56 (Sub-
resourceloading (COEP)/IMG direct). For the second run, we
only analyzed the differences between the same browsers in the
new and old versions and clustered these differences.

It is important to note that many differences are not specific
to a single feature but are due to general browser differences. For
example, Chrome does not allow NULL bytes in headers and resorts
to network error in such cases. In addition, while many of the
differences are due to the parsing of the response, others are due to
general feature differences that are unrelated to the header received.
For example, we discovered issues in the iframe sandbox logic in
combination with CSP in both Firefox and Safari. Thus, we present
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# Title Type Affected Party* Status with Hyperlinks (as of 2025-08-31)

General Differences

Related to header parsing
1 LF in Header Block Compat. K Confirmed
2 NULL in Header Name Compat. Fetch Standard Confirmed
3 CR in Header Block Compat. Fetch Standard Confirmed; Partially known
4 Whitespace Colon Compat. Fetch Standard Confirmed
5 VT in Header Values Compat. ?, K Confirmed (?), Confirmed (K)
6 Empty + Non-Empty Header Compat. � Confirmed
7+ Leading Colon Compat. K Confirmed
8+ Leading Whitespace Compat. K Confirmed

Not related to header parsing
9 Status Code 300 Compat. � Known + unintended; Fixed
10 Mixed Content Images Security �,K Known + unintended (�), Known + unintended (K); Fixed
11 HTTP Upgrade Security ?, K Known + intended (?), Known + intended (K)
12 Embed/Object URL Reliance Compat. K Confirmed

Feature-Specific Differences

Related to header parsing
13 CSP: Uppercase Scheme Compat. ? Fixed
14 CSP: Invalid Bytes Compat. � Fixed
15 CSP: */ Compat. ? Confirmed + Spec changed
16 CSP: Path in Frame-Ancestors Security � Confirmed
17 XFO: Whitespace Everywhere Compat. � Fixed
18 HSTS: Various Issues Security ?, �, K Fixed (?), Fixed (�), Confirmed (K)
19 RP: FF and VT allowed Compat. ? Confirmed
20 LF in Fetch Compat. �,K Confirmed (�), Confirmed (K)
21 PerformanceAPI and NULL Compat. K Confirmed
22 NULL in Header Values (Fetch) Compat. K Fixed
23 XCTO: Various Issues Compat. ? Known + unintended; Fixed
24+ XFO: FF allowed Compat. ?, K New (?), Confirmed (K)

Not related to header parsing
25 Code 300 Cached (HSTS) Compat. ?, � Confirmed (?), Fixed (�)
26 CSP: Sandboxed Frames FA Security � Confirmed
27 CSP: Sandboxed Frames ’self’ Bypass Security K Confirmed
28 CSP: Sandboxed Frames *.origin Security K Confirmed
29 FP Header not supported Compat. �,K Known + intended
30 PP Header not supported Security �,K Known + intended
31 TAO and 302 Compat. K Fixed
32 Mixed-Content performanceAPI Compat. � Confirmed
33 CORP and Object Compat. � Known + unintended
34 RP Safer-Defaults Privacy , �, K Known + intended (�, K), Known + intended ( )
35 RP Safer-Defaults Exception Top-Level Privacy � Known + intended; Missing documentation
36 RP Safer-Defaults Exception Same-Site Privacy �,K Known + intended (�), Known + intended (K); Might change
37 COEP Secure-Context Security K Confirmed
38 CORP Random Caching Security � Confirmed
39 Download Window Reference Compat. All Different default settings for download behavior
40 Download Behavior Difference Compat. K (Mobile only) Confirmed
41 204 Not About:Blank Compat. K (Mobile only) Confirmed
42+ HSTS Race Condition Security K Confirmed
+ Root cause discovered in the second run with the four new browser configurations * All root causes affecting Chrome also affect Brave

Table 4: Identified root causes across two dimensions discovered in the initial run and the second run.

the results along two axes: whether an issue is generic or feature-
specific and whether or not an issue relates to header parsing.

Table 4 shows all 42 difference root causes we identified while
analyzing all clusters grouped by the four categories. 38 of them
were identified in the initial run, and four more were identified
in the second run with the new browser versions. 31 of the 42
root causes were previously unknown (see status column), and we
reported 36 bugs to affected browsers and specifications.

The Table includes a short descriptive name, an impact type,
the affected party, and the issue’s status. We always attributed the
differences to the browsers that act against the current specifica-
tions, and if this was not possible against the specification itself.

The status for newly discovered issues can be new, confirmed, i.e.,
we submitted a bug report that got acknowledged, or fixed, i.e., ad-
ditionally, the browser vendor already changed their codebase and
fixed this issue. Some of the discovered issues were already known
to the vendors; here, we distinguish between intended differences,
such as Brave intentionally not supporting privacy-invasive refer-
rer policies, and unintended differences, i.e., the browser vendor
was already aware of the issue but did not fix it yet.

7.3 Browser Differences
In the following, we first list the differences between browser con-
figurations belonging to the same engine in the first run. Then, we

https://bugs.webkit.org/show_bug.cgi?id=272749
https://github.com/whatwg/fetch/issues/1747
https://github.com/whatwg/fetch/issues/1156#issuecomment-2059234753
https://github.com/whatwg/fetch/issues/1156#issuecomment-2059234753
https://issues.chromium.org/issues/334965855
https://bugs.webkit.org/show_bug.cgi?id=272745
https://bugzilla.mozilla.org/show_bug.cgi?id=1891715
https://bugs.webkit.org/show_bug.cgi?id=285661
https://bugs.webkit.org/show_bug.cgi?id=285606
https://bugzilla.mozilla.org/show_bug.cgi?id=1614151
https://bugzilla.mozilla.org/show_bug.cgi?id=1811787
https://bugs.webkit.org/show_bug.cgi?id=247197
https://chromestatus.com/feature/6056181032812544
https://webkit.org/blog/16301/webkit-features-in-safari-18-2/#security-and-privacy
https://bugs.webkit.org/show_bug.cgi?id=272892
https://issues.chromium.org/issues/334275650
https://bugzilla.mozilla.org/show_bug.cgi?id=1891465
https://issues.chromium.org/issues/334278797
https://bugzilla.mozilla.org/show_bug.cgi?id=1891466
https://bugzilla.mozilla.org/show_bug.cgi?id=1891467
https://issues.chromium.org/issues/334773322
https://bugzilla.mozilla.org/show_bug.cgi?id=1891468
https://bugs.webkit.org/show_bug.cgi?id=272670
https://issues.chromium.org/issues/334755563
https://bugzilla.mozilla.org/show_bug.cgi?id=1891719
https://bugs.webkit.org/show_bug.cgi?id=272748
https://bugs.webkit.org/show_bug.cgi?id=272739
https://bugs.webkit.org/show_bug.cgi?id=272740
https://issues.chromium.org/issues/40258951
https://issues.chromium.org/issues/388544226
https://bugs.webkit.org/show_bug.cgi?id=285666
https://issues.chromium.org/issues/335542796
https://bugzilla.mozilla.org/show_bug.cgi?id=1892209
https://bugzilla.mozilla.org/show_bug.cgi?id=1891477
https://bugs.webkit.org/show_bug.cgi?id=272674
https://bugs.webkit.org/show_bug.cgi?id=272680
https://caniuse.com/feature-policy
https://caniuse.com/permissions-policy
https://bugs.webkit.org/show_bug.cgi?id=272682
https://bugzilla.mozilla.org/show_bug.cgi?id=1892391
https://bugzilla.mozilla.org/show_bug.cgi?id=1732106
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#browser_compatibility
https://github.com/brave/brave-browser/wiki/Deviations-from-Chromium-(features-we-disable-or-remove)#modified-features-and-functionality
https://bugzilla.mozilla.org/show_bug.cgi?id=1734328
https://bugzilla.mozilla.org/show_bug.cgi?id=1734328
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://bugs.webkit.org/show_bug.cgi?id=272683
https://bugs.webkit.org/show_bug.cgi?id=273240
https://bugzilla.mozilla.org/show_bug.cgi?id=1892261
https://bugs.webkit.org/show_bug.cgi?id=272741
https://bugs.webkit.org/show_bug.cgi?id=272743
https://bugs.webkit.org/show_bug.cgi?id=285660
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list the additional differences discovered by our rerun. Concrete
example root causes are discussed in Section 7.4.

7.3.1 First Run. Chrome 120 vs. Chrome 121: The 16 differences
are all due to incorrect parsing of XCTO headers prior to Chrome
121 (root cause 23).
Brave vs. Chrome:All differences are caused by the fact that Brave
does not support privacy-invasive values such as unsafe-url for
Referrer-Policy (root cause 34).
Safari desktop vs. Chrome iPadOS: Most differences (52/62)
are caused by Chrome on iPadOS setting a stricter mixed-content
preference (root cause 10). Additionally, some differences are caused
by varying download behavior betweenWebKit mobile and desktop
and a parsing difference for status code 204 (root causes 40 and 41).
Desktop vs. Android (Brave, Chrome, Firefox): The differences
are due to non-automated downloads in the case a file with the
same name already exists on Mobile (root cause 39) and to caching
of status code 300 for HSTS (root cause 25).

7.3.2 Updated Browser Versions. Following our rerun, we com-
pared each browser configuration with its previous version and
report on the results here. In general, most differences are due to
fixes to our bug reports following the initial run; however, some
other changes exist.
Chrome 131 vs. Chrome 122: All the 286 differences are due to
fixes for our bug reports for root causes 13 and 18.
Firefox 133 vs. Firefox 123: The 129 differences are due to fixes
for root causes 17 and 18. Additionally, root causes 9 and 10 were
fixed (known previously, no new bug reports by us), and the behav-
ior of root causes 32 and 39 changed.
Safari 18.2 vs. Safari 17.3.1: Safari changed significantly and has
1,799 differences compared to the earlier version. Some changes are
due to fixes to our reports for root causes 31 and 22. Additionally,
blocking of mixed content images (root cause 10) was implemented,
and its version of automated HTTP Upgrades was implemented
(root cause 11). However, most differences are due to new general
header parsing differences. For root cause 4, Safari changed the
behavior from Chrome’s to Firefox’s. For root cause 3 and the new
one leading colon (root cause 7), Safari now throws network errors
instead of only ignoring such invalid rows. Additionally, Safari now
accepts leading whitespace (root cause 8). Lastly, we discovered one
race condition in the HSTS implementation of Safari responsible
for many differences (root cause 42).
Firefox 133 vs. Safari 18.2/Chrome 131: Due to the fix of root
cause 17, we discovered a new difference in whitespace behavior
where earlier all engines behaved incorrectly and Firefox is now
following the specifications (root cause 24).

7.4 Case Studies
The following presents root cause case studies across the four
groups and their potential impact.

7.4.1 General Differences. The root causes in the general header
parsing section apply to all or many headers. The first four and
root causes 7 and 8 are triggered by severely broken HTTP mes-
sages, such as including a NULL byte in a header name. While such
responses do not conform to the HTTP specification [15], it is usu-
ally unclear how browsers should handle such responses. Thus, we

reported several bugs to the specification writers to clarify those
ambiguities such that in the future they can be tested by usual
expected-outcome tests in WPT. For example, Chrome decided to
treat responses with NULL bytes in header names as network er-
rors, whereas other browsers ignore only the malformed header.
We added our findings to existing specification issues and tried
reviving the discussion to specify browser behavior for HTTP/1.1
parsing of severely broken responses. The sixth issue is that Firefox
incorrectly parses responses containing two headers of the same
name if one is empty. Firefox ignores the empty header even though
for headers defined as a single field such as CORP, COOP, or ACAO,
such occurrences should be treated as an invalid list. A developer
using Firefox and incorrectly sending two headers could believe
their site is adequately protected. However, most Web users using
other browsers would not be protected.

In the non-parsing section, we mainly discovered differences
due to Mixed-Content and the new HTTP Upgrade feature. Firefox
and Safari had yet to implement Level 2 of the mixed content speci-
fication [18, 1] in the initially tested versions and allowed mixed
passive content instead of automatically upgrading it. The HTTP
Upgrade feature in Chrome goes even further and automatically
tries to upgrade every top-level HTTP request, only allowing HTTP
if the HTTPS request fails. While some sites might break by stricter
mixed-content settings, the benefits of only allowing HTTPS on
the Web are positive for security and privacy. Thus, it is good that
all browsers want to align to more aggressive settings here.

7.4.2 Feature-Specific Differences. In the feature-specific header
parsing section, we discovered differences due to whitespace, cas-
ing, or non-ASCII letters in header values. For most of these, the
specification clearly stated the correct behavior, and it was possible
to detect the non-conforming browsers and report the issue to them.
Several of the reports are already fixed. If developers use such in-
valid values in one of the affected browsers, they might incorrectly
conclude that their header is correct and working, leaving users of
other browsers unprotected.

A particular case to highlight is HSTS, where we found many
differences between the browsers and divergences from the spec-
ifications for all browsers. A small number of these cases were
previously discovered by Siewert et al. [45], but the browsers took
no action. Our reports already caused Chrome engineers to rewrite
their HSTS parsing implementation from scratch to adhere more
closely to the specifications. Currently, no tests for HSTS exist in
WPT due to fear of HSTS contaminating other test results [52].
That there are no cross-browser HSTS testing efforts seems to be a
central factor in why we could detect many issues related to HSTS.
Thus, in addition to reporting the individual issues to the browsers,
we also suggested reconsidering how to run HSTS tests to the WPT
maintainers. As invalid HSTS headers, such as duplicate headers,
are not uncommon in the wild [41], browser divergence here can
lead to users being vulnerable to network attackers.

Another case to highlight is root cause 15. We reported it to
Chrome, as Chrome was not following the specifications. The
Chrome developer assigned to the bug report was also an author
of the specification and decided that the behavior of Chrome is
preferable. Thus, instead of fixing it in Chrome, they changed the
specification.
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Most of the discovered differences in the last category relate to
CSP enforcement and Referrer-Policy implementations. For CSP,
several differences relate to sandboxed frames. Sandboxed frames
should have an opaque origin that should not match anything. As
we discovered three issues in two browsers here, sandboxing seems
hard to implement. A CSP frame-ancestor of * should not match
a sandboxed frame in the ancestor chain, which is not the case in
Firefox. More severely, Safari has a major issue with sandboxed
frames that themselves set a CSP. If the CSP allows scripts from
’self’, Safari matches every possible origin instead of only allow-
ing scripts from the origin specified in the src attribute, making it
possible to bypass the CSP. Additionally, CSP patterns of the format
*.origin do not work in Safari, potentially leading developers to
deploy overly broad CSPs increasing the attack surface.

For the Referrer-Policy, it is known that privacy-friendly browsers
such as Brave, Firefox, and Safari do not support privacy-invasive
values such as unsafe-url. Brave additionally does not support
values such as origin. We also discovered two undocumented
exceptions in Firefox and Safari. In Firefox, the privacy-invasive
values are only turned off for subresource loads such as iframes or
images; they are still supported for user-initiated clicks on links and
window.open. According to Mozilla, this is an intended behavior
as it is required for web compatibility. However, they agreed that
such exceptions should be explained in their documentation on
MDN. A second exception is that insecure values are supported
for same-site origins in Firefox and Safari, which has also not been
documented. Mozilla answered that this is the intended behavior,
whereas Apple replied that this was their intended behavior, but
they are considering changing it.

8 Discussion
In this section, we first discuss the limitations and future extensions
of our work, then summarize the main insights, and finish with
ethics considerations of our work.

8.1 Limitations and Future Extensions
A core limitation of our work is that we only tested the HTTP/1.1
implementations of browsers. Additional issues could be hidden
in the HTTP/2 or HTTP/3 implementations. The WPT HTTP/2
implementation does not allow sending malformed responses, such
as multiple headers of the same name, and does not contain a
general-purpose HTTP/3 server. To the best of our knowledge, no
HTTP/2 or HTTP/3 implementation intentionally allows for invalid
responses. A future extension would be to implement an HTTP/2
and HTTP/3 server that allows the sending of invalid responses to
test these protocols. However, as HTTP/2 and HTTP/3 are specified
in a much stricter manner, we do not expect many differences in the
general parsing implementations and expect the feature-specific
differences to remain the same.

Another limitation is that extending our work to future browser
configurations and headers requires some human effort. We note
that creating the tests is a one-time effort for each feature. A domain
expert can easily create new tests if browsers decide to add new
security headers in the future, which they usually do at a rate of
less than one header per year. The analysis pipeline automatically
outputs clusters that have to be condensed down to root causes. As

many clusters were very similar, this process only took a couple of
hours in the initial full comparison. When testing new versions of
existing browsers, it is enough to compare the changes between the
versions of the same browser; no full comparison across all browser
configurations is necessary, and this took on average 30 minutes
for each tested new browser version.

Lastly, the chosen approach can have false negatives as it cannot
detect that all browsers equally misbehave.

8.2 Main Insights
Even though frameworks such as WPT have existed for years, our
testing framework enabled us to detect many new differences be-
tween browsers in their header parsing and enforcement behavior
caused by 42 root causes, out of which 31 were previously unknown.
In the following, we discuss the implications of these differences
and how to get rid of them in the future.

Foremost, the results show that compatibility between browsers
engines is still far from perfect due to implementation mistakes
and intentional differences. Browser differences can annoy, confuse,
and mislead developers and, in the worst case, result in security
and privacy issues for web users. As discussed in our threat model
section, this implies that users of a website may get a degraded
level of security if they use a browser that behaves differently from
the browsers that the web developers tested the website on. If
a developer implements a security header incorrectly, e.g., uses
SAME ORIGIN instead of SAMEORIGIN, and only tests for the feature
in Firefox, theymight conclude that the featureworks, leading to the
vast majority of users using other browsers that ignore this value
and not apply the XFO defense being unprotected. We discovered
that at least two sites in the crawler.ninja dataset [25] use an X-
Frame-Options header value of SAME ORIGIN on their landing
page, and many more use other invalid values. In another vein, if
a developer uses a correct value (according to the specifications)
that is erroneously not supported in their used browser, they might
assume the header is non-functional and abort using the security
mechanism and deploy a website not protected in any browser.

Other compatibility issues can lead to broken code or functional-
ity issues. For example, responses with an invalid linefeed in their
header block do not load in Safari. As users on iOS have to use
WebKit-based browsers [2], some legacy websites might be unus-
able for them. Differences in Referrer-Policy implementations and
different default values result in various privacy levels for users of
different browsers. Some browsers actively promote that they are
using better defaults and users expect that to be the case. Thus, these
users could be upset as several undocumented privacy exceptions
exist in Firefox and Safari.

Additionally, several discovered issues are exploitable by any
web attacker. For example, consider the CSP bypass for sandboxed
frames in Safari. An attacker can frame a site that has an HTML
injection and a CSP with ’self’ in the script-src and is otherwise
secure and can bypass it and perform XSS on the frame, which is
similar to CVE-2023-38592 discovered by Bernardo et al. [5].

However, the blame for differences should not only be on browser
vendors. Our tests did not only reveal implementation mistakes,
but they also revealed several instances in which the specifications
are currently unclear or intentionally allow browsers to choose
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how to behave. For some of these instances, we have seen related
issue reports against the specifications opened more than five years
ago without concluding. We hope the additional information we
provided in these issues reignites the discussion and results in better
and more concrete specifications and consequentially in consistent
protections across browsers.

Most importantly, we have shown that current expected-outcome
browser testing is not enough and that differential browser testing is
necessary to thoroughly test security header implementations. Even
though WPT contains several thousand tests, we discovered many
differences that they did not cover. In an extreme case, WPT does
not contain any tests for HSTS due to an architectural design issue.
While our tests use the WPT infrastructure, they cannot be directly
added to WPT due to their differential nature and the fact that they
do not define the expected outcome, which is required for WPT.
However, prototype instances of each root cause can be converted
to standard WPT tests after deciding what is the expected outcome,
and our reports have already resulted in many tests being added
to WPT by browser vendors and us including a major effort to test
and define browser parsing of highly invalid HTTP/1.1 responses.

Finally, we encourage browser vendors to integrate our frame-
work into their development cycle. Using the analysis results ven-
dors can verify that their bug fixes are complete and correct. Addi-
tionally, they can uncover new root causes in other browsers if after
an update differences where previously all browsers misbehaved
are now detectable.

8.3 Ethics Considerations
In our research, we discovered vulnerabilities and other issues in
browsers and disclosed them to the affected vendors right after we
identified them following the principles described in the Menlo Re-
port [28]. For each discovered root cause, we searched for whether
the issue had already been reported or was otherwise known, such
as being described in a release note. We only reported the issues
for which we could not find information to keep work for the bug
triagers minimal. We used the responsible disclosure procedures
available for each browser vendor for issues with direct security
implications. We reported the issues with only minor or compatibil-
ity impacts as functionality bugs to avoid unnecessary work for the
security teams. Additionally, all bug reports contained links to URLs
exhibiting the reported behavior, enabling analysts to reproduce
the issues without overhead easily.

The tested browsers and responses are entirely under our con-
trol in our internal network. We did not perform any requests to
unrelated websites (live systems) and thus cannot cause harm by
too much load or invalid responses.

9 Related Work
Here, we survey related work in the areas of security headers,
differential browser testing, and mobile browsers.

9.1 Security Headers in Browsers and the Web
The adoption of security headers in the wild such as CSP or HSTS,
has been widely measured both academically and non-academically

[25, 51, 42, 30, 8, 20]. Many of these works also showed that devel-
opers have trouble using security headers and real-world headers
often do not provide adequate protection or are straight up invalid.

Related to our work, Calzavara et al. [9] and Siewert et al. [45]
studied browser implementation differences and specification is-
sues in various security headers such as CSP, XFO, and HSTS. Our
approach diverges by not starting with the specifications and a
small set of handcrafted tests. Instead, we employ differential test-
ing to extensively examine browser parsing behavior. Furthermore,
we cover a broader range of headers. Specifically, we developed a
response mutation algorithm and introduced invalid values such
as newlines, NULL bytes, and inserted spaces. Additionally, we
propose a methodology for analyzing the root causes of differences
using outcome-browser mappings, enabling us to uncover numer-
ous new root causes of browser discrepancies.

9.2 Browser Testing
Various works tested security features in browsers. Hothersall-
Thomas et al. created a testing suite for many different features [27].
Schwenk et al. compared the SOP in browsers [43]. Nguyen et al.
compared caching in browsers [34]. Other works showed differ-
ences in regards to Cookies, CSP, CORB, and more [55, 44, 29, 5].

Similar to our work, Wi et al. used differential testing to find
CSP enforcement differences for script execution [55]. In contrast
to them, we are not focusing on the correct enforcement of valid
headers but instead investigate parsing issues for invalid headers.
Additionally, we cover twelve features and not only one feature
(CSP script-execution).

Apart from scientific research, the most important project in
browser testing is the cross-browser web-platform-tests (WPT)
project that maintains an extensive collection of tests that are regu-
larly run against major browsers [12].

We based our framework on them. The main difference between
our project and the WPT tests is that they require defining the
correct behavior up-front. In contrast, we record differences in
behavior and later analyze the results.

9.3 Mobile Browser Security
Luo et al. performed a longitudinal analysis on the support of se-
curity mechanisms in mobile browsers from 2011 to 2018 and dis-
covered many issues [31]. More recently, mobile browsers were
analyzed in their privacy behaviors [56, 37].

While these works discovered many differences between An-
droid and desktop browsers, Pradeep et al. revealed that the vast ma-
jority of Android browsers in 2023 are WebView browsers [37] that
nowadays automatically update via Google System Services [21].
We showed that mobile browsers nowadays behave almost identi-
cally to their desktop counterparts of the same version in the case
of security headers.

10 Conclusion
Modern websites deploy a plethora of security headers to enable
protection against various attacks. Consistent implementations of
security header parsing and enforcement code across browsers are
required. Otherwise, users’ security and privacy depend on their
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chosen browser, and compatibility issues could lead developers to
opt out of deploying security headers altogether.

By running 177,146 tests for twelve features and 16 headers in
16 browser configurations, we observed 5,606 tests (3.16%) with a
different outcome across the browsers, which we traced back to
42 root causes out of which 31 were previously unknown. These
results show that the current amount of cross-browser testing is
insufficient, and many browser differences concerning security
headers exist. In the context of this work, we reported dozens of
bug reports to browser vendors, specifications, and shared testing
platforms. We hope to improve the state of security header parsing
and enforcement across browsers going forward such that all users
are consistently protected.

Four of the root causes were only discovered by rerunning our
framework several months later on newer browser versions. Per-
forming such a rerun of our framework involves little manual in-
volvement, and we encourage browser vendors to integrate it into
their development workflow.

Availability
We are committed to open science and made our full source code,
including our response generation, testing pipeline, and analysis
scripts available at Zenodo: https://zenodo.org/records/1689035
8 [40]. Additionally, we released the collected dataset at Zenodo:
https://zenodo.org/records/16996058 [39]. We also contributed
many tests and several other changes to the open-source WPT
project [12].
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