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ABSTRACT
The Web has become a platform in which sites rely on intricate
interactions that span across the boundaries of origins. While the
Same-Origin Policy prevents direct data exchange with documents
from other origins, the postMessage API offers one relaxation that
allows developers to exchange data across these boundaries. While
prior manual analysis could show the presence of issues within
postMessage handlers, unfortunately, a steep increase in postMes-
sage usage makes any manual approach intractable. To deal with
this increased work load, we set out to automatically find issues in
postMessage handlers that allow an attacker to execute code in the
vulnerable sites, alter client-side state, or leak sensitive information.

To achieve this goal, we present an automated analysis frame-
work running inside the browser, which uses selective forced ex-
ecution paired with lightweight dynamic taint tracking to find
traces in the analyzed handlers that end in sinks allowing for code-
execution or state alterations. We use path constraints extracted
from the program traces and augment them with Exploit Templates,
i.e., additional constraints, ascertaining that a valid assignment
that solves all these constraints produces a code-invoking or state-
manipulating behavior. Based on these constraints, we use Z3 to
generate postMessages aimed at triggering the insecure functional-
ity to prove exploitability, and validate our findings at scale.

We use this framework to conduct the most comprehensive
experiment studying the security issues of postMessage handlers
found throughout the top 100,000 most influential sites yet, which
allows us to find potentially exploitable data flows in 252 unique
handlers out of which 111 were automatically exploitable.
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1 INTRODUCTION
The web that we know today heavily relies on the intricate inter-
play of various services that jointly contribute to the plethora of
feature-rich applications that we have grown fond of over the years.
This interconnectivity, however, would not be possible without
controlled relaxations of the web’s fundamental security principle,
i.e., the Same-Origin Policy (SOP). The SOP sets a clear security
boundary that protects the integrity of web sites by restricting how
content from different origins (i.e., the tuple of protocol, host, and
port) may interact with one another. That is, an attacker’s page
cannot read or modify the content of a banking application by
accessing the frame or read content from other origins. Sharing
data across origins can be very beneficial to users, e.g., having one
central billing provider which can be used on various online shops
removes the need to provide payment information to all the par-
ties. The shop can then share the invoice with the service provider,
which handles confirmation of the user and billing, and then no-
tifies the shop that the transaction was successful. The shop can
then continue with the shipping process and provide the user with
real-time information about the checkout process.

One such mechanism introduced to allow for the sharing of data
across origin boundaries is the postMessage API. It allows sending
serializable JavaScript objects from one frame to another by making
use of the postMessage function that is accessible cross-origin on
any frame. The receiving frame can register JavaScript callback
functions that are invoked when a postMessage is dispatched to
the current frame. The postMessage API provides the means to
ascertain the integrity and confidentiality of messages. However,
these mechanisms are purely optional. As Son and Shmatikov [24]
could show back in 2013 via manual analysis, postMessage handlers
are frequently exposing security-critical functionality while not
checking the integrity of messages at all or doing so incorrectly.
In various cases, these handlers could be abused to achieve Cross-
Site Scripting (XSS), which allows an attacker to exfiltrate data
and perform actions on behalf of the user. Besides introducing
XSS, postMessage handlers can be abused to manipulate client-side
state (such as cookies and localStorage) or leak the very same state
to attackers. As shown in a recent study by Stock et al. [26], the
amount of sites making use of cross-origin communication using
the postMessage API has increased between 2013 and 2016 by more
than 20% among the top 500 sites. In fact, our crawls show that
among the top 100,000 sites we can find over 27,000 hash-unique
handlers. Given this widespread usage of postMessages, we can
no longer meaningfully rely on manual efforts to reason about the
state of postMessage handler security.

To tackle this issue, we present the first automated pipeline,
which allows us to analyze the security- and privacy-sensitive be-
havior of postMessage handlers across the web. We leverage forced
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execution with lightweight dynamic taint tracking techniques to
explore the complete behavior of handler functions and extract
potentially vulnerable program traces. By using an SMT solver on
the path constraints extracted from these traces, we can generate
postMessages that trigger the dangerous behavior. Furthermore, we
augment our traces by encoding exploitation criteria on the data
flows, allowing us to generate exploit candidates, which we validate
automatically. Contrary to previous approaches, which had to rely
on patched browsers or reduced JavaScript language features, our
complete pipeline runs as an in-browser solution, without the need
to change the underlying JavaScript engine.

We report on a study of the postMessage handlers of the top
100,000 sites, according to Tranco [19]. We find 111 unique handlers
with validated flaws, affecting 379 sites. Of those, due to insufficient
origin checks, 219 sites can be trivially exploited by any attacker.

To sum up, our work makes the following contributions:

• We present a dynamic execution framework for JavaScript,
augmented with forced execution and taint tracking, that au-
tomatically collects security- and privacy-relevant program
traces from postMessage handlers in Section 3.

• Based on these traces, we show the feasibility of encoding
exploitability constraints in Section 4, which allow us to
automatically generate payloads that trigger malicious func-
tionality using a state-of-the-art SMT solver.

• With this pipeline in place, we report on the most compre-
hensive study of the threats of postMessage handlers as of
today in Section 5. We analyze the top 100,000 web sites,
uncovering abusable security issues on 379 sites from which
219 are trivially exploitable.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the necessary background information
for our paper. In particular, we briefly discuss the underlying mech-
anism of postMessages and which attacker models we consider
for our analyses and how these might interact with the handler
functions of the target site. Subsequently, we outline how our work
relates to prior work.

2.1 Background and Attacker Models
The fundamental security boundary of the web is the so-called
Same-Origin Policy (SOP). The SOP restricts interaction among
resources that do not share the same origin by default, e.g., two
frames cannot access one another if their origin differs. However,
such two frames might need to exchange data to allow users a
seamless integration of services, e.g., a website using a third-party
payment provider that handles the billing of the customer. To enable
such use cases, the postMessage API was introduced to allow for
controlled relaxations of the SOP. In the setting of postMessages,
one frame sends a postMessage containing arbitrary, serializable
data to another frame by calling the postMessage functionality
on a handle to the other frame. While the SOP disallows access
to functions on cross-origin frames, the postMessage function is
an exemption by design to enable cross-origin communication. If
the receiving frame has a postMessage handler registered, it will
be called with an event that contains the sent data (event.data),

1 // running at https://foo.com
2 function handler(event){
3 if(event.origin == 'https://bar.org' && event.data == 'Ping')
4 event.source.postMessage('Pong','https://bar.org')
5 }
6 window.addEventListener('message', handler);
7
8 // running at https://bar.org
9 foo_window.postMessage('Ping', 'https://foo.com')

Figure 1: Simple postMessage example

alongside the origin (event.origin) of the sender frame and a
handle to the sender frame (event.source), as shown in Figure 1.

While the postMessage API allows for both the enforcement of
integrity and confidentiality of messages, these guarantees are not
provided by default. In our example, integrity is enforced by check-
ing that the message originates from https://bar.org before ex-
ecuting our intended functionality. Confidentiality is achieved by
fixing the second parameter of the postMessage call to the desired
destination origin. In the example, this is set to https://foo.com
as the browsers enforces that the postMessage is only sent when
the origin of the frame matches the supplied origin. That is, should
the frame have been navigated away for some reason, the message
will not be leaked to another origin.

Our work aims at automatically finding security- and privacy-
sensitive functionalities inside such handlers, which can be ex-
ploited using standard attacker models, i.e., the web attacker. Once
the victim visits the attacker’s site, the attacker’s JavaScript can get
a handle to the target page, either via iframes, popups, or newly
created tabs, and then send postMessages to the target page. De-
pending on whether a registered handler performs checks on the
origin, the attacker might need to control specific domains. In our
example above, an attacker needs to be able to send a postMessage
from the origin of https://bar.com to trigger functionality.

We are interested in understanding how many handlers conduct
security- and privacy-sensitive behavior that can be used across
origins. In particular, out of this set of sites, we want to investigate
how many of those could be abused by an attacker, e.g., because
they lack proper integrity checks, to compromise the site. For our
work, we set out to find four types of security- and privacy-related
issues, as depicted in Figure 2:

Cross-Site Scripting (XSS). If a postMessage handler uses data
sent via a postMessage in the context of a native function that
performs a string-to-code conversion, such as document.write or
eval, the attacker can send a message containing a payload that
they want to have executed within the vulnerable site. An attacker
might leverage this to steal confidential information or perform
actions on behalf of the user.

State Manipulation. When the sent data is used in an assignment
to document.cookie or a localStorage value, the attacker can tam-
per with the client-side state. Such state is frequently used inside
the site, bearing the risk of introducing persistent client-side XSS
[25] or undermining the efficacy of security mechanisms deployed
by the site. More concretely, if an attacker can arbitrarily change
cookies for a given site, they may change the value of a Double Sub-
mit cookie [17] and thus be able to circumvent Cross-Site Request
Forgery protections or perform Session Fixation attacks [18].



1 function handler(event){
2 switch(event.data.mode){
3 case 'xss':
4 eval(event.data.xss)
5 case 'state':
6 document.cookie = event.data.cookie
7 localStorage[event.data.key] = event.data.value
8 case 'launder':
9 let frame = document.getElementById('other_window');
10 frame.contentWindow.postMessage(event.data, '*')
11 case 'leak':
12 event.source.postMessage(document.cookie, '*')
13 }
14 }

Figure 2: Four types of PM handler vulnerabilities

PM Origin Laundering. Given a postMessage handler that relays
received postMessages, an attacker can leverage this functionality
to launder their origin and use the origin of the vulnerable handler
to circumvent otherwise secure origin checks. In this scenario, the
attacker needs to position the frame, which should receive the
laundered message relative to where the vulnerable frame relays
this message. In the example depicted in Figure 2, the attacker can
redirect the frame that is fetched from the DOM as discussed by
Barth et al. [3], by using the window.frames property.

Privacy Leaks. When a postMessage handler sends out private
information, such as user preferences or session information, to
another frame when requested to do so, an attacker can potentially
trigger this action and leak sensitive information. Such information
may be fetched from cookies or localStorage and then sent to the
frame, which sent the original message as depicted in Figure 2.

2.2 Related Work
Our related work is mainly distributed among two axes, the first
one being the feasibility of applying advanced program analysis
techniques such as forced execution and symbolic/concolic exe-
cution to web sites, whereas the second area is the identification
of security and privacy threats on the web at scale. Naturally, the
underlying techniques have been applied in various other domains,
e.g., binaries [22] or LLVM IR [5], however, we mainly focus on the
area of the web as it introduces its own set of challenges.

Advanced Program Analysis Techniques for Web Security. Saxena
et al. [20] used symbolic execution, which was patched into the
WebKit engine, to find injection vulnerabilities in web sites automat-
ically. They utilized their engine to generate test cases, which were
then further analyzed using dynamic taint tracking approaches
combined with fuzzing techniques to find XSS. We purposely chose
forced execution over symbolic execution, as our approach only
needs to conduct the costly constraint solving step when we have
found an interesting trace in the program, as we are only interested
in a small subset of all behavior constituting a normal postMessage
handler. Similarly to the aforementioned work, Li et al. [11] built
a symbolic execution engine with added event exploration mech-
anisms guided by a taint analysis. In contrast, Kolbitsch et al. [9]
picked up on the idea of symbolic execution for malware detection
and added what they dubbed Multi Execution, which allows cover-
ing multiple symbolic paths in one execution simultaneously. Since
postMessage handlers found in the wild are not actively trying to

subvert analysis, e.g., by provoking path explosions, the number
of paths that need to be explored are typically reasonable, which
lessens the need for a Multi Execution framework. Additionally,
choosing such an approach would incur changes to the underly-
ing JavaScript engine. Hu et al. [7] built forced execution atop
the Webkit engine to find malicious Javascript code. Contrary, to
their approach, we opt to implement a selective forced execution
framework, which allows us to only forcefully execute PM handlers,
while the rest of the code runs normally. Kim et al. [8] presented a
crash-free forced execution engine built atop Webkit with a similar
goal of uncovering malicious Javascript. Among other things, their
engine handles missing DOM elements and exceptions to advance
further into the malicious parts of the code. Since our attacker
model cannot influence the presence of DOM elements by itself,
we are restricted with the environment that is currently present in
the page. Therefore, artificially handling such cases would produce
infeasible paths that cannot be exploited. Modeling real-world be-
havior of modern web sites requires extensive support for string
operations and regular expressions in the logic of the constraint
solver, which has been an ongoing line of research [12, 20, 27, 28]
for several years.

While our work shares the common theme of applying advanced
programming techniques to the web, we show the feasibility of
moving most of the building blocks, i.e., forced execution, dynamic
taint analysis, and exploit/test generation, to an in-browser solution.
We apply all these building blocks to the domain of postMessage
handlers and show the feasibility of modeling in-the-wild behavior
in a state-of-the-art SMT solver and discuss how we can augment
collected constraints to find exploitable handlers automatically. This
enables our approach to be seamlessly migrated to newer browsers
with added features, allowing easy extension to new APIs if needed.

Large-Scale Analyses on the Web’s Security and Privacy. We now
turn towards discussing related works concerning the security and
privacy threats on the web at scale. In 2013, Son and Shmatikov
[24] presented the first systematic security and privacy analysis of
postMessage handlers showcasing real-world vulnerabilities in 84
of the top 10,000 sites by manually analyzing 136 handler functions.
With respect to XSS on the client, plenty of research has been
conducted on the feasibility of finding client-side XSS at scale [10,
14, 25] by using a browser engine with byte-level taint tracking and
context-sensitive exploit generation schemes. Finally, the privacy
implications of leaking browser state in the form of cookies was
analyzed by Sivakorn et al. [23]. They concluded that a plethora of
sites expose sensitive information via cookies.

Since the 2013 paper from Son and Shmatikov, the number of
handlers has significantly increased, leaving us to analyze over
27,000 hash-unique handlers rather than 136. This necessitates the
need for automated tools capable of analyzing the web at scale.
We further show that the 2013 insight that even if postMessage
handlers perform origin checks, most of them are faulty and cir-
cumventable by an attacker, are no longer valid. Instead, we show
that for modern handlers the majority implement the origin checks
correctly. Comparing ourselves to the work about client-side XSS
detection, these works observe the data flows present within the
pages and build exploit candidates purely on the observed values. In
contrast, our approach precisely captures all operations performed



1 // running at example.com
2 (function(){
3 function isAllowedOrigin(origin){
4 return /example\.com/.test(event.origin);
5 }
6
7 function handler(event){
8 if(!isAllowdOrigin(event.origin))
9 return;
10 if(event.data && event.data.mode == 'eval')
11 eval(event.data.fn.split(',')[1])
12 }
13 window.addEventListener('message', handler);
14 })();
15 // running at example.com.attacker.com with vuln pointing to example.com
16 vuln.postMessage({mode: 'eval', fn:',alert(1)'}, '*')

Figure 3: Vulnerable postMessage handler

on single data flows and can generate a payload accordingly. Finally,
while the work of Sivakorn et al. [23] on leaking cookies relied on
unencrypted network traffic, transport encryption has become ubiq-
uitous in recent years, making this vector less prevalent. We instead
show the dangers associated with postMessage handlers that can
leak client-side state, underlining that the threats to privacy can be
extended to other threat models.

3 METHODOLOGY
In this section, we discuss our approach leveraging the concepts of
forced execution and dynamic taint propagation to automatically
extract security and privacy-related traces given a postMessage han-
dler function as input. Furthermore, we explain how we leverage
an SMT solver to automatically generate valid postMessages from
these traces that trigger the observed functionality. Figure 3 depicts
a vulnerable PM handler that serves as a running example through-
out this section alongside an exploit that causes an alert to show. An
attacker controlling a domain such as example.com.attacker.com
can send a Javascript object which has the fn property set to their
payload via a postMessage to the frame that has this handler regis-
tered to execute the payload in the vulnerable origin (see line 16).

3.1 PMForce Overview
PMForce consists of three distinct modules, as depicted in Figure 4,
that are automatically injected into every frame that we visit us-
ing the Chrome Dev Tools protocol. We use the puppeteer Node.js
framework to steer our instances of Chromium. All the modules,
except for the constraint solving routine, are implemented in Java-
script, which allows us to perform most of the necessary operation
within the browser itself. As there exists no stable port of Z3 for
Javascript, we implemented our constraint solving mechanism in
python using Z3Py, which is exposed to the other modules via bind-
ings through the Dev Tools protocol, thus accessible through the
window object. Our implementation will be available to the general
public [1] once this work is published.

In the first step, we use forced execution and taint tracking to find
potential flows from the postMessage object into sensitive sinks
such as document.write, localStorage, and other postMessages.
Furthermore, we track flows that stem from all client-side storage
mechanisms to check for leakage of privacy-sensitive information.

example.com

https://example.com

Force Execution
+

Taint Analysis

Exploit Generation
+

Constraint Solving

Traces

Exploit Validation

Exploit
Candidates

collected 
PM handler

Figure 4: Overview of our approach

In the second step, we use these traces to construct JS objects that,
when sent as a postMessage, will trigger the sensitive functionality
and thus lead to code execution, manipulation of client-side state, or
leak information about the client-side storages of the page. To that
end, we introduce the concept of Exploit Templates and utilize those
together with the path constraints found in the traces to generate
exploit candidates using Z3 as an SMT solver.

As the last step, we validate that these candidate exploits indeed
achieve our intended behavior by calling the unmodified handler
code with our candidate exploit as input and checking whether the
intended action (such as code execution) was successfully triggered.

3.2 Forced Execution
We leverage the concept of forced execution, in which the control
flow of a program is forcefully altered to explore as much code
of the program as possible. While other works are making use of
symbolic execution for Javascript [12, 20], we only want to make
use of the expensive step of constraint solving when we have found
an interesting trace through the program. There exist various paths
throughout one particular handler, which are not interesting from
our point-of-view, whichmeans that we also do not need to generate
valid inputs that allow us to reach these points in the program.

To achieve this goal, we utilize the dynamic instrumentation
framework Iroh [13] and extend its capabilities where necessary.
Doing so allows us, among other things, to register callbacks that
are triggered whenever conditionals are evaluated. More specif-
ically, we can also change the results of any of the operations.
Figure 5 represents a minimal code snippet that showcases how
we can change the outcome of the conditional used within an If
statement and thus can choose to either execute the consequence
or the alternative. Similarly, we change the values of switch-case
constructs to execute particular cases selectively. As a final control-
flow altering step, we change the outcome of any expression that
is lazily evaluated, i.e., if an OR is lazily evaluated, we change the
value of the first expression to false and if an AND is lazily executed
we change the value to true. This allows us to forcefully capture the
full path constraints, which we need to solve later. In our concrete
example of Figure 3 this means that we collect both the constraint
that event.data must evaluate to true and that event.data.mode
must be equal to the string eval as checked in line 10.



1 // functionCode is the string representation of the function to force execute
2 let stage = new Iroh.Stage(functionCode);
3 let IFListener = stage.addListener(Iroh.IF);
4 IFListener.on("test", (e) => {
5 // shouldForceExecute returns true if this Basic Block should be

forcefully executed in this program run↩→
6 e.value = shouldForceExecute(e.hash);
7 });
8 // isNotStale returns true for as long as we can find new code while forcefully

executing the program↩→
9 while(isNotStale()){
10 eval(stage.script)
11 }

Figure 5: Using Iroh to forcefully execute a basic block

Selective Forced Execution. While the initially registered postMes-
sage handlers serve as an entry point into the code portion handling
incoming messages, such handler code frequently calls into other
pieces of the code, e.g., functions accessible in the scope of the
handler to perform origin checks or further process the message.
Thus, whenever we forcefully execute a call to a function that is
not a native browser function, we instrument this code on the fly
and execute our instrumented version instead. Since our instru-
mentation step relies on Iroh’s changes to the source code of the
handler functions, the transformation loses all handles to variables
defined in the scope where the initial function was defined. In our
example, this means that once we have instrumented the initial
handler function, any reference to isAllowedOrigin is lost, as this
was only locally scoped inside the closure. To solve this issue, we
execute our complete pipeline in the strict mode of Javascript, such
that non-existing variables lead to exceptions. We can then handle
these exceptions by fetching the appropriate values, be it basic
types, objects, or functions, from the appropriate scope, using the
Debugger and Runtime domain of the Chrome DevTools Protocol
[6]. Importantly, the return value of any of our instrumented func-
tions might be dependent on further constraints on the event that
is passed to the handler function. Considering our example in Fig-
ure 3, we only return true if the origin matches a particular regex.
However, there is only an implicit data flow from event.origin
to the return value of the function. To solve this issue, we emit all
path constraints of the called function once we return and append
those to the path constraints of the calling function.

Side Effects. Naturally, forced execution of every possible path of
the handler function will incur side effects to the page, e.g., change
the DOM, add cookies, or change global variables. However, most
of these side effects do not affect our further analysis, e.g., even if
we change global values, they cannot prevent us from executing
specific paths of the program as we are forcing path constraints any-
way. Solely side effects that destroy the current execution context
or remove elements from the DOM hinder our analysis. The most
prominent example of such destructive behavior is a PM handler
that is used for authentication, i.e., on a successful authentication,
it sets a cookie and reloads the page. Reloading the page will ter-
minate all ongoing JavaScript executions and thus interrupt our
analysis. To prevent this, we implement a navigation lock on the
currently visited page and abort every navigational request using
the Chrome DevTools Protocol [6]. Since our crawlers do not click

on any elements, all navigational requests after the initial docu-
ment load are byproducts of our forced execution and can thus
be aborted without changing otherwise benign functionality of
the document. As for removing elements from the DOM, we could
find handlers that remove certain elements that could be abused if
they are still present, e.g., a document.write on the document of a
same-origin frame. If this element was removed during our force
execution, any subsequent validation attempt would fail. Therefore,
while forcefully executing the handler, we substitute such function
calls with no operations.

3.3 Taint Analysis
While the forced execution allows us to reach interesting parts of
the handler functionality, we still need to discuss how we can lever-
age it to find traces that are relevant to the security or privacy of the
site. To achieve this goal, while we are forcefully executing different
paths throughout the handler, we supply the handler function with
a Javascript Proxy object as input. Such proxy objects allow inter-
cepting accesses to properties on the object. We utilize these traps
to persistently capture all operations that the code performs on the
proxied object. Together with the dynamic execution engine Iroh
and these traps, this builds a lightweight taint-engine which does
not rely on modifications of the browser as, e.g., the taint engines
of Lekies et al. [10], Melicher et al. [14], Saxena et al. [21], and can
selectively be applied to parts of the code. In the following, we
discuss how different types of accesses on our Proxy objects need
to be handled to ensure that we do not lose taint information and
that we capture all necessary operations to allow for the automated
generation of attack payloads.

Base Types. The basic case deals with accessed values that are
basic types; these might be strings or further Javascript objects.
Every proxy object maintains two internal structures, the first one
being an identifier, which coming back to our example might be
event.data or event.data.mode, and the operations that were
executed on this specific element. This means that if we access
a property, say mode on a proxy that represents event.data. We
can simply create a new Proxy that represents event.data.mode
and remember all operations that were executed on the parent
element inside the new object. Naturally, since we start with no
knowledge about the expected format of received postMessages
for any handler, whenever we encounter properties that are not
defined on a proxied object, we initialize those with empty objects.
Additionally, we try to infer types of proxied properties based on
the further usage throughout the program, e.g., if a string function
is accessed on a proxied object, we correct our assignment from an
empty object to a string and remember this typing information for
later use when solving path constraints.

Functions. When accessing native functions on objects, we need
to ascertain that we remove our proxy layer on the arguments
before calling the function, as the native functions only work on
the underlying wrapped values. After the function call returns, we
re-proxy the returned value and note that this native function was
called on the proxied object in the internal data structure of the
proxied object. When a function is called on a specific object, we
not only need to remove the proxy layer for the arguments but also



{
"ops": [
{
"type": "ops_on_parent_element",
"old_ops": [],
"old_identifier": "event"

},
{
"args": [
0,
8

],
"type": "member_function",
"function_name": "substring"

},
{
"op": "===",
"val": "https://",
"side": "left",
"type": "Binary"

}
],
"identifier": "event.origin"

}

Figure 6: Example output of taint analysis

for the underlying object. In particular, it might be the case that
both the object on which the function is called and an argument
are proxied values. Any non-native function will be instrumented
on-the-fly and thus can handle our proxy objects as input.

Symbols. Symbols are a way to define, e.g., custom iterators on
objects [15]. When the program logic iterates over our proxies, they
are accessed with the Iterator Symbol as a property. We leverage
such accesses, to infer further type information and return an itera-
tor that consecutively outputs further proxied objects that represent
accesses to the different indices on the underlying object. While
we can leverage this pattern to accommodate any of the currently
specified symbols, we could only find that the iterator symbol was
of use for our investigated handlers.

Implicit Type Conversions. Similarly to Symbols, the native func-
tions toString and valueOf need further considerations. These
functions are commonly used to convert objects to the same type,
which frequently happens when one of our proxied objects is part
of a Binary Expression. Thus, we always return the underlying
object when these functions are called and within our callbacks of
Iroh discern whether the initial program issued this call; thus we
need to add it to the operations of the proxy, or whether we caused
it and it can, therefore, be omitted.

Provided with the means to handle all operations on such proxy
objects, we still need to capture all those expressions in which proxy
objects are used, e.g., an equality check to the string eval as is the
case in our running example in Figure 3. For this, we resort to Iroh’s
callbacks, allowing us to hook, e.g., Unary and Binary Expression.
We apply the corresponding operation to the underlying objects
and return the updated proxy as result of the operation. We can
then check whether we find any of our proxied objects as part
of the conditionals of a control flow statement. Figure 6 shows
a sample constraint extracted from a conditional, in which the
handler function asserts that the origin is an HTTPS origin.

3.4 Solving Constraints
Our taint analysis allows us to precisely capture all accesses to the
event object, thus, whenever we encounter a proxied object as part
of a control flow-altering statement, we can add this object to the
list of path constraints that would hypothetically need to be fulfilled
for this execution path to execute without being forced. Once we
encounter an access to a sink, e.g., document.write to find XSS,
we generate a report containing all the collected path constraints
(including negated constraints if we forced specific branches to be
false) and the respective object that ended up in the sink and pass
this information to our exploit generation engine.

The next step of PMForce consists of transforming our represen-
tation of function calls and expressions into Z3 clauses, these can
then be attempted to solve and if successful will provide us with
assignments to our collected identifiers that execute the intended
functionality. Even though Javascript is a weakly typed language
and is renowned for having various language quirks, we found that
functionality used within real-world postMessage handlers can be
reasonably well represented as Z3 clauses. In particular, a prime
example of such hardships is that JavaScript allows for comparisons
between arbitrary types. Fortunately, in handler functions, such
implicit conversions are rarely part of the program logic.

We use our types inferred at runtime to instantiate Z3 variables
with fixed types. For variables forwhich no type hints were recorded
at runtime, we defer to treating them as strings. Further, we coerce
types on the fly if we observe that two Z3 expressions appear to
mismatch, e.g., when we guess that a variable is a string while
it is actually compared against an integer, which can be done in
JavaScript but lacks an implicit representation in Z3.

In the following, we discuss further considerations that allow us
to represent common behavior using Z3 clauses.

Automated Conversion to Boolean. In Javascript, basically any
value can be coerced to a boolean value on the fly. This pattern is
regularly used to check for the existence of properties on objects,
as is done in Figure 3 line 12. In Z3, however, clauses need to be
real boolean values as there does not exist any implicit conversion
(even though there exist explicit conversions such as str.to.int).
To allow for the JavaScript shorthand to be representable in Z3, we
introduce constraints on basic types that mimic the behavior of
Javascript. As an example, the empty string in Javascript is treated
as false, while a non-empty string is always treated as true. With
these modifications to the clauses, we can emulate the behavior of
the Javascript engine for conditionals. While this automated con-
version works for most use cases where the values are used inside
conditionals, it does not work when the resulting value is further
processed. Line 2 in Figure 7 highlights the pattern that a value is as-
signed to the first object that evaluates to true, a common practice to
allow for cross-browser compatibility. Since this value used inside a
Binary expression in line 3, coercing it to a boolean value does not
work. Since we assume by default that an OR expression produces
a boolean, we perform the coercion directly and only later notice
that these values are not used as booleans, e.g., when accessing
further properties. However, once we use such a value outside of a
conditional, we can correct this erroneous coercion. To that end, we
introduce a helper variable that must be equal to either of the values
and use this helper variable as a substitute for our wrongly coerced



value. Coming back to the example, we then compare this helper
variable against https://foo.com and correctly enforce that either
event.origin or event.originalEvent.origin must match it.

Regular Expressions. Even though Z3 supports the use of regular
expressions, we need to transform Javascript regular expressions
into Z3 clauses automatically. We leverage an open-source regex
parser[4] and transform the abstract representation into Z3 clauses.
Additionally, we emulate the common behavior of Javascript func-
tions that use regular expressions in which the matched string can
have arbitrary prefixes and suffixes as long as the regular expression
does not force this explicitly using ˆ and $ respectively.

String Functions. While Z3 supports various string operations
due to work by Zheng et al. [28], functionality exhibited by postMes-
sage handlers quickly exceeds the capabilities that Z3 offers natively.
Therefore, we emulate the behavior of commonly used function-
ality, such as split or search. We use our collected handlers to
find the functionality used in the wild. Since our underlying string
solving logic does not incorporate all string functions that the Java-
Script engine supports, we need to model some of the function calls
with the underlying building blocks of the logic. As an example,
the search function in Javascript takes as input a regular expression
and checks whether the given string contains a substring matching
the regular expression and returns the index of the matching string.
To emulate this behavior we introduce a helper variable, asserting
that this variable is part of the language spanned by the regular
expression, using our regex conversions and Z3’s ReIn, and then
return the index of said helper string in the original string using
Z3’s indexOf operation on strings. While we were able to accom-
modate most of the behavior found in these handlers, some of the
used functionality lacks an explicit representation in Z3. One of
the prime examples of behavior that cannot be supported by the
current logic of strings is replacement with regular expressions.
Although Z3 supports functionality which checks whether or not a
string is part of a regular language, and supports string replace on
strings, there is no generic way to express string replace with reg-
ular expressions with these building blocks. While these are clear
limitations of our instantiation of PMForce, which stem from choos-
ing a specific SMT solver, the underlying logics could accommodate
such behavior[27].

Non-existent Properties. We found that handler functions regu-
larly check for the presence of objects which are not normally part
of an incoming postMessage. Line 2 in Figure 7 shows such an exam-
ple from the wild, where the originalEvent property is accessed,
which is not standardized but rather added by libraries such as
jQuery. However, some of the handlers are no longer registered via
frameworks but rather directly added by using the addEventLis-
tener function; thus, the accessed property is merely an artifact
of continuously evolving code. Naturally, properties other than
event.origin and event.data cannot be abused by an attacker.
Since our forced execution collects all constraints, i.e., also those
that are part of lazy execution chains that would normally not be
relevant, we end up with path constraints that incorporate clauses
with identifiers that are not attacker-controllable. More specifically
in the aforementioned example we would generate the constraint
that either event.origin or event.originalEvent.originmust

1 function handler(event){
2 let origin = event.originalEvent.origin || event.origin;
3 if(origin === 'https://foo.com')
4 // ...
5 }

Figure 7: Example of non-existing property usage and lazy-
evaluation to objects

pass the origin check. For every property on the event object that
cannot be influenced by the attacker, we will thus emit additional
constraints asserting them to be equal to the empty string. Doing
so will enforce that these properties coerce to false once used inside
conditionals on their own. In our example this means that we force
the SMT solver to disregard the non-tamperable property and thus
find a valid assignment in the event.origin property.

4 AUTOMATICALLY VALIDATING
POSTMESSAGE SECURITY ISSUES

In this section, we discuss our exploit generation techniques. To
that end, we first discuss how we use assignments from Z3 to
reconstruct JavaScript objects, followed by our encoding of exploits
as Z3 clauses. We then present how we automatically validate that
the generated assignments exploit the handler functions to confirm
the discovered vulnerabilities.

4.1 Translating Z3 Assignments to JavaScript
Since we use the access patterns as identifier for the Z3 string rep-
resentation of our constraints, upon solving these constraints, we
need to transform the mapping of identifiers to values back to the
object that can be called with the handler functionality. For this,
we recursively build up the object based on the access path of the
identifier. Doing so might unveil imprecisions of our type infer-
ence/conversion from Javascript to Z3. If we come back to our initial
example of Figure 3, we have the constraint that event.data must
evaluate to a true value and that event.data.mode must be set to
a specific string. Since we represent event.data as a string value,
due to the lack of other options, our assignments incorporate a
non-empty string assignment of event.data. We add the assigned
string of the parent element as another property of the object. This
allows us to correctly handle those cases where the assigned strings
are necessary, e.g., a check on whether event.data.toString()
contains a particular substring.

Similar to our taint analysis, which helps us to infer types of our
identifiers, there exist cases in which additional typing information
is part of our assignments. More concretely, wemight have captured
in our taint-analysis that JSON.parse was used on event.data
prior to accessing further properties on the loaded object. In these
cases, we emit further constraints that force the assignment of a
variable representing the type of event.data to be JSON. When
we encounter such further typing information once reassembling
the assignments into a JavaScript object, we adjust the generated
object to accommodate for this typing information, e.g., encode the
subpart of the data object as JSON.



4.2 Exploit Templates
Until now, we have presented the complete pipeline, which allows
us to collect and generate path constraints of security- and privacy-
relevant program traces. This allows us to generate assignments
that trigger said functionality but do not necessarily exploit them
from an attacker’s point of view.

To tackle this issue, we also collect the precise information of the
operations applied to the proxy object that was called in a sink and
encode our payload as further constraints on the underlying ob-
ject. For this step, we introduce what we call Exploit Templates,
which is an abstraction on the context in which a specific exploit
might trigger. For example, the most basic Exploit Template could
enforce that a string flowing into eval contains a payload, e.g.,
alert(1). The constraint solver will then, along with other con-
straints that stem from the page, find an assignment that fulfills
both the constraints of the handler as well as contains our pay-
load. Such a basic template will most likely generate assignments
that will not execute our payload, e.g., by generating syntactically
incorrect JavaScript code that will then flow into eval. However,
this simple example showcases a trade-off that our real templates
need to balance; they must be as generic as possible to allow for as
many constraints of the page as possible while ascertaining mali-
cious behavior once successfully solved. The basic template is the
most generic one there is, as we only ascertain that our payload is
contained in the assignment, but, it fails to ensure exploitability.

Adding further constraints to the path constraints, however,
means that chances that the exploit generation terminates in a
reasonable amount of time diminishes. To allow for the analysis
to finish without timeouts, we apply each template in a separate
query to the SMT solver and refrain from using constraints that
are difficult to solve, i.e., regular expressions, in the Exploit Tem-
plates. We restrict operations induced by the Exploit Templates
to startsWith and endsWith constraints of fix strings and only
enforce that origins must start with either http:// or https://
as there is no way to express a valid origin using these restrictions.
This allows us to solve most of the path constraints found in the
wild augmented with our Exploit Templates in less than 30 seconds.
We defer the discussion of timed-out attempts to Section 6.1, where
we also provide insights from the encountered timeouts.

Other approaches on finding client-side XSS [10, 14, 25] generate
exploits in a manner that is only sensitive to the syntactic structure
of the data passed to the sink, but not constraints to even reach the
sink. As we observe in practice, though, path constraints regularly
impose restrictions on the generated payload, leaving current tech-
niques inapt. In the following, we discuss the considerations that
lay the foundation of our different types of Exploit Templates, i.e.,
templates for XSS and those for client-side state manipulation.

XSS Templates. The overall goal of our XSS Templates is to im-
pose restrictions on the object that ends up in a sink such that an
attacker can execute arbitrary code in the page while allowing as
many degrees of freedom as possible concerning the exact circum-
stances. In general, we distinguish two cases depending on whether
the sink that is accessed is an HTML executing sink (e.g., inner-
HTML) or a Javascript sink (e.g., eval). Since HTML parsers are
lenient in the way that they parse HTML and allow for various er-
rors (e.g., auto-closing elements if end tags are not found, or parsing

of broken tags) the former case can be solved relatively easy by re-
sorting to so-called XSS polyglots [2]. These are payloads intended
to break out of as many contexts as possible, before adding pieces
of HTML code that then execute the XSS payload. In these cases,
our very simple constraint that only enforces that the payload is
contained in the string that ended up in the sink suffices. Contrarily
for JS, parsers strictly check the syntax and incorrectly breaking
out of the current context would violate the syntax. Therefore, we
apply various Exploit Templates to capture as many contexts as
possible. A common check enforced by sites is that the string that is
used inside eval must contain an site-specific substring. A generic
template that would capture such a context would essentially ascer-
tain that the string starts with our payload, followed by a JavaScript
comment. This template allows the constraint solver to add any
arbitrary string at the end, and the comment asserts that anything
appended does not tamper with the exploitability.

For more details about the exact Exploit Templates used, we
refer the interested reader to Appendix A for an overview or to our
codebase for the exact implementation.

State Manipulation Templates. The second goal of our attack sce-
nario consists of the manipulation of the client-side state in the
victim’s browser. While there exist cases in which an attacker might
be able to control keys or values of these stores partially, we specifi-
cally target those cases in which an attacker can arbitrarily control
the values as these trivially lead to an infection vector for persistent
client-side XSS [25] or can allow an attacker to circumvent defense
mechanisms, e.g., when the site uses Double Submit cookies to
protect against CSRF [17]. To achieve arbitrary control, we enforce
in our Exploit Templates for state injections that the attacker can
fully control both keys and values of localStorage or cookies.

4.3 Automated Validation
With the generated candidate exploit assignments and our auto-
matic transformation to Javascript objects, we can now use these ob-
jects to call the un-instrumented handler functions directly. While
directly calling functions with our prepared objects does not per-
fectly mimic the behavior of sending postMessages using the API
across origin boundaries, we note that our exploit generation only
sets the data and the origin attributes. We do not make use of prop-
erties that cannot be serialized using the structured clone algorithm
[16]. Thus the data part of our constructed message is guaranteed
to work the same whether or not we make use of the postMessage
API. When origin checks are recorded in crawling, we generate
origins that fulfill the required constraints. Note that these are not
necessarily valid or existing origins, however, enforcing the correct
structure of origins would incur an extensive regular expression
check that would be difficult to solve using our SMT solver. We
assume that whenever we can find an assignment for an origin even
if it is incorrect, that there exists a valid origin that still passes the
constraints on the origins. We verify that this assumption holds for
our investigated handlers when manually analyzing origin checks
found in the wild, as discussed in Section 5.2.

To validate the exploitability, we set our payload to either call
a logging function (in case of XSS) or invoke storage access with
randomized nonces, such that we can later check if the random
key with random value has been successfully set. Only when we



Table 1: Overview of discovered handlers using dangerous sinks and prevalence of vulnerabilities. Table shows total number
of handlers (by file hash), unique handlers (by structural hash), and vulnerable handlers. Additionally, outlines how many
handlers had origin checks and how many sites were affected by the vulnerable handlers.

total number number of vulnerable handlers with origin check without origin check
Sink of handlers unique handlers number sites number sites number sites

eval 132 57 43 166 18 110 25 56
insertAdjacentHTML 38 4 4 12 1 1 3 11
innerHTML 37 37 16 54 4 35 12 19
document.write 26 4 3 5 2 4 1 1
scriptTextContent 4 4 1 3 0 0 1 3
jQuery .html 3 3 1 1 0 0 1 1

sum code execution 217 105 66 240 24 149 43 91

set cookie 108 101 18 110 2 4 16 106
localStorage 63 60 30 31 7 8 23 23

sum state manipulation 161 150 47 140 9 12 38 128

total sum 377 252 111 379 32 160 80 219

find evidence that our candidate indeed triggered the intended
functionality we generate a report of a successful exploitation,
meaning our analysis does not have any false positive cases.

4.4 Modeling PM Laundering and Leakage
PM laundering and PM leakage both capture similar flows, albeit
with slightly different environmental constraints. In the case of PM
laundering, the attacker wants to achieve that a postMessage han-
dler relays (parts of) the message that the attacker sent to another
frame. This is then received by the second frame with the origin of
the relaying frame. Contrary, for PM leakage, the attacker wants to
be the target of a postMessage carrying sensitive information such
as localStorage entries or cookie values.

In both cases, the attacker needs to be able to control which doc-
ument receives the postMessage. We can distinguish between two
cases of how a target page might send postMessages, i.e., by fetch-
ing specific iframe elements from the DOM or by using relative
frame handlers such as top, opener or event.source. Unfortu-
nately, as described by Barth et al. [3], an attacker can navigate
specific sub-frames of any target page using the window.frames
property cross-origin, leaving the former trivially exploitable. As
for the latter, exploitability strictly boils down to the attacker’s
capabilities of manipulating these properties, e.g., having a site
frame another vulnerable application. Since there is no objective
criterion which allows us to define the success of an attacker as
these issues are context-specific, we resort to manual analysis in
those cases where we find potentially dangerous patterns as output
by our dynamic execution engine.

To also account for flows coming from either document.cookie
and localStorage, we replace values fetched from either storage
mechanism with our proxy values and capture operations on these
as in our general case. This showcases the flexibility of our frame-
work, as we can essentially replace any value with a proxy version
to capture all operations performed on these objects.

5 RESULTS
In this section, we discuss the results of applying PMForce to the
top 100,000 sites, according to Tranco[19] created on March 22,

2020. We visited each tranco link, and ten randomly selected same-
site links found on the starting page and analyzed each handler
that was registered by the pages, totalling 758,658 documents and
27,499 handler functions Our experiment was conducted March 23,
2020 and took around 24 hours using 130 parallel instances of our
pipeline, using a timeout of 30 seconds per query to the SMT solver.

5.1 Vulnerability Analysis
Table 1 depicts the findings of our experiment on the Tranco top
100,000. The total number of handlers represents the amount of
unique handlers per hash sum of the handler code, for which we
could observe a tainted data flow into the respective sinks. By
manually sampling our results we could find various handlers which
use slightly differing layouts, as they were the same library but
slightly adapted to the website, or had differing nonces across
observed instances of the same handler. To paint a clear picture
of how many different families of handlers we could observe to
be vulnerable, we used a hash over the lexical structure, i.e., the
representation as tokens, of the registered handlers and used this
as a distinguishing factor. Overall, this resulted in 10,846 unique
handlers that we encountered in our experiment. In total, we found
252 handler families with a data flow to any of our considered
sinks, out of which we are unable to analyze 21 due to timeouts
and another 21 due to unsupported behavior. We defer a detailed
analysis of these issues to Section 6.1.

Naturally, not all of our forcefully found flows are abusable by an
attacker, e.g., sanitized values for XSS or only partially controllable
storage values. The number of abusable cases represents our auto-
matically verified issues, which can then be further classified among
handlers without any check and handlers with origin checks. Even
though Son and Shmatikov [24] showed that most origin checks are
faulty, we defer a thorough analysis of these checks to Section 5.2.

In terms of direct XSS, we find that eval is the most prominent
sink, with 43 unique handlers that have an exploitable flow. Out
of those, 25 do not perform any origin checks and thus can be
exploited by a web attacker without any other pre-conditions. Sim-
ilarly, 16 handlers use attacker-controllable data in an assignment
to innerHTML, out of which twelve do not perform an origin check.



1 window.onmessage = function (event){
2 if(event.data.type === 'foobar')
3 eval(event.data)
4 }

Figure 8: Example of false positive of the taint analysis

Randomly sampling eight (~20%) handlers for which we could not
automatically validate code execution flaws, we could find five cases
in which exploitability relied on environmental constraints, e.g.,
the presence of certain DOM elements which were not present in
the page. One handler, depicted in Figure 8, is unexploitable. In this
handler, it is first checked that the property type of event.data
exists, and subsequently eval is called with the entire event.data
object. To exploit this as an attacker, we’d have to set event.data
to, e.g., alert(1). The surrounding code, however, expects the data
property to be an object with the key type, i.e., there is no way to
satisfy both constraints. The remaining two handlers ensure that
only alphanumerical payloads can be used in the context of the
sink, for which none of our Exploit Templates fulfill this criterion.
While we cannot automatically validate such cases, the output of
our taint analysis might be passed to a human expert to provide a
final verdict on the exploitability using domain knowledge to, e.g.,
bypass custom sanitization or filter routines. However, we were
still able to find 43 handlers that lead to a trivial code execution
by any web attacker and overall 66 that might be abusable by an
attacker if they could compromise a trusted host.

We note here that the sum of handlers with and without origin
check amounts to 67. This is caused by the fact that we determine
uniqueness on the structure of the directly registered handler, not
all code that was used to handle an incoming message. An example
of such a handler is shown in Figure 10 in the appendix, where the
same dispatcher is used to invoke different functionality (once with
and once without origin checks) for different sites. Even though we
analyze all hash-unique handlers, the table shows the aggregate of
structure-unique handlers, hence folding together cases where the
registered handler matches, but the invoked functionality differs.

In terms of arbitrary storage manipulation, we could find that
30 handlers are susceptible to localStorage alterations, while 18
to cookie alterations. Again the vast majority does not perform
any checks at all, leading to trivial manipulations by an attacker.
Sampling another 20 handlers (~20%) where PMForce was unable to
validate storage manipulations, uncovers 19 cases in which the han-
dler only allows certain prefixes for the keys of storage alterations
or even allows only a single fixed key. In the remaining handler,
we could observe that the constraint solver runs into a timeout,
even though an arbitrary storage manipulation was possible, which
forms a false negative in our analysis. While alterations of specific
key-value pairs might still suffice in a specific attack scenario, this
does not capture the attack vector that we set out to investigate,
i.e., full control of the client-side storage mechanism.

To conclude our results, we found that 43 handlers allowed for
trivial XSS affecting 91 sites, as well as, 38 handlers allowing for
storage manipulation affecting 128 sites. In total, an attacker can
exploit 219 sites due to a complete lack of origin checks.

Even though an abundance of handler functions are performing
non-critical operations, we can still find various handlers that do,
and that can be abused by an attacker. This highlights the strengths
of PMForce in contrast to manual efforts, which would no longer
scale to the current corpus of handler functions.

5.2 Origin Checks
We now turn to analyze the correctness of the origin checks of the
problematic handlers we discovered. Using our lexical uniqueness
criterion, we captured a total of 32 unique handlers that have ex-
ploitable flows once the origin check can be bypassed by an attacker
which would affect another 160 sites. Manually examining these
checks shows that contrary to the results of Son and Shmatikov
[24] from 2013, nowadays, 24 out of the 32 handlers perform strict
origin checks that are not circumventable. With 19 out of these 24
handlers, the vast majority compares the origin to a set of fix ori-
gins. The remaining five implement checks that allow for arbitrary
subdomains of a set of fixed eTLD+1, either via regular expressions
or checking that the origin ends with the eTLD+1. The incorrect
checks constitute of seven indexOf checks that an attacker can cir-
cumvent using an arbitrary domain with appropriate subdomains
or registering a specifically crafted domain and one incorrect check
using a broken regular expression. We can conclude that contrary
to previous analyses, origin checks have shifted to being mostly
correctly implemented with the exceptional odd-ones out.

5.3 PostMessage Relays
In this section, we set out to discuss the results of our manual in-
vestigation of handlers for which we could observe a flow from a
received postMessage to another call to the postMessage function.
We found a total of 45 unique handlers that exhibited any such flow,
from which 25 use the data taken from the received postMessage
and use it inside a fixed structure that is then sent further along,
thus, not controllable by an attacker. Of the remaining 20 handlers,
four reflect the message to the sender, thus cannot be used to relay
a message to another frame reliably. In Chrome the event.source
property will be set to null once the frame that originally sent the
message was navigated, thus preventing an attacker from navigat-
ing the attack page before the postMessage is processed. Firefox
and Safari, in contrast, do not have this protective measure in place,
which introduces a race condition, in which the attacker tries to
navigate the frame before the vulnerable handler echos the data
back using the event.source property. While we were able to
confirm these issues with toy examples, in which messages are
reflected to the sender after 100ms, we discard these cases for our
analysis as they are dependent on whether or not an attacker can
delay the execution of the vulnerable handler in practice.

Overall, this leaves us with 16 handlers that relay messages that
an attacker can abuse. For six, the message is relayed to the parent
frame, and ten relay the message to another frame in the same
document. As described by Barth et al. [3], frames can be navigated
across origins, which allows an attacker to set the location of any
target frame across origins, unless site make use of CSP’s frame-src
directive. In fact, in two of these ten cases, frame-src prevents an
attacker from choosing arbitrary targets for the relay.



While the direct security implications of postMessage relays
remain dependent on further postMessage handlers, which allow
particular origins to execute sensitive functionalities, they unveil a
more general issue that arises from the usage of the origin as an
integrity check. The receiving frame cannot discern whether the
message stems from the benign sender, an attacker, or even any
other script that runs in the same origin as the intended sender
(e.g., as a third-party script).

5.4 Privacy Leaks
In a separate crawl of the same dataset performed on March 25,
2020, we proxied all elements stemming from either cookie or lo-
calStorage and observed flows from these stores which are sent
out via a postMessage as described in Section 4.4. We found eight
unique handlers with such a flow, for which one was a false positive,
and all other flows constituted privacy leaks. Four handlers leaked
specific values to the sender, and three leaked arbitrary values that
can be influenced via the received postMessage. Contrary to our
other cases, these were exclusively found on a single site and were
not part of library functionality found on multiple sites.

Naturally, this analysis comes with the inherent limitation that
we do not have any means to log in to the sites. While this is a
general limitation of a large-scale analysis, our framework could
be used in a context where automatic logins are feasible, e.g., as-
sisted by login information of the developer. This would allow us
to uncover more functionality of the sites overall, but in particular,
could unveil more handler functions which handle sensitive user
data since these might only be present after the login.

5.5 Case Studies
In the following, we discuss two case studies that depict interesting
vulnerabilities that we could find with PMForce.

Obfuscated Ad Frame. We found an XSS flaw in the obfuscated
postMessage handler of an ad company (shown in Figure 9). Our
dynamic analysis collected the corresponding values used in the
conditionals, which are shown as comments in the source code.
The postMessage format expected by the handler consists of four
strings separated by the string ˜@#bdf#@˜. The first string needs
to be Ad, and the second string is the injection point. The third
and fourth string are used for checks not directly related to the
exploitable program trace, however, they need to be present to
avoid a runtime error. The setIfr method calls document.write
with our payload enclosed in HTML which is fixed by the page.
We note that our approach was able to fully automatically find and
validate the exploit; a task that would be extremely time-consuming
for a manual analysis of this heavily obfuscated code snippet.

Bot Protection Service. We found that a widely used bot protec-
tion service was, once it suspected a browser of being operated
automatically, delivering captcha interstitials, which had a vulnera-
ble postMessage handler accepting messages from any origin and
using sent data to set cookies. This pattern can be used by an at-
tacker to set arbitrary cookies for all the sites that make use of
this protection mechanism by first triggering the bot detection via
frequent requests and then use the handler to set cookies. Inves-
tigating one of the vulnerable sites, an online real estate market

1 function receiver(a) {
2 if (a[_$_8e7c[46]]) { // a['data']
3 var s = _$_8e7c[1]; //
4 try {
5 var r = _$_8e7c[47]; // r = ~@#bdf#@~
6 block = a[_$_8e7c[46]][_$_8e7c[48]](r)[3]; //

event.data.split('~@#bdf#@~')[3]↩→
7 size = a[_$_8e7c[46]][_$_8e7c[48]](r)[2]; //

event.data.split('~@#bdf#@~')[2]↩→
8 message = a[_$_8e7c[46]][_$_8e7c[48]](r)[1]; //

event.data.split('~@#bdf#@~')[1] contains our payload↩→
9 s = a[_$_8e7c[46]][_$_8e7c[48]](r)[0] //

event.data.split('~@#bdf#@~')[0]↩→
10 } catch (ex) {}
11 ;if (s === _$_8e7c[49]) { // s == 'Ad'
12 try {
13 ad = message; // sets global ad value to our injected payload
14 if (block == _$_8e7c[50]) { // block == 'true'
15 // ...
16 } else {
17 // ...
18 }
19 ;setIfr(currentIframe, size[_$_8e7c[48]](_$_8e7c[57])[0],

size[_$_8e7c[48]](_$_8e7c[57])[1]) // does document.write
with ad variable on currentIframe

↩→
↩→

20 } catch (ex) {
21 // ...
22 }
23 }
24 // ...
25 }
26 }
27 // hosted on the attackers page with target pointing to the vulnerable frame
28 target.postMessage('Ad~@#bdf#@~<img src="foo"

onerror="top.alert(document.domain)"><textarea>~@#bdf#@~a~@#bdf#@~true')↩→

Figure 9: Obfuscated Ad handler

place, unveils the use of Double Submit cookies for CSRF preven-
tion. While the Bot prevention also means that any further request
is blocked unless a captcha was solved, the attacker can rely on
the user to assist in this endeavor. Once the captcha is solved, the
handler sets a cookie from the bot prevention service for the tar-
get domain indicating the success, thus allowing any subsequent
requests until it reclassifies the behavior as suspicious. After the
captcha was solved, the attacker can perform the cross-site request
and circumvent the protection due to the previously planted cookie.

6 DISCUSSION
In this section, we discuss limitations of our prototype implemen-
tation and draw overarching conclusions from our work.

6.1 Limitations
While initial work from 2010 by Saxena et al. [20] showed promising
results in using symbolic execution, taint analysis, and fuzzing to
uncover XSS on a small scale, it remained an open problem to scale
this approach to the web. We could show the feasibility of such a
large-scale approach in an in-browser solution that does not rely
on patching the underlying JavaScript engine. Furthermore, we
remove the necessity of relying on fuzzing with constraint solving.
Nevertheless, our approach obviously has limitations related to the
applicability of existing tools to our problem space.

Our approach leverages the fact that most postMessage handlers
in the wild make use of a subset of Javascript behavior that can be
reasonably represented in current state of the art SMT solvers. In
21 handlers of our total 252 unique handlers with data flows to rel-
evant sinks, we encountered two types of behavior that interfered



with the analysis. First off, certain behavior is not transferrable
to the constraint language. In particular, Z3 only supports ASCII
characters. In addition, JavaScript’s usage of bind, apply or call,
which cannot be handled in a generic fashion. Moreover, Z3 lacks
support for backreferences and capture groups in regular expres-
sions, and cannot reason about the length of arrays, as these are
represented as functions within Z3. Second, our approach inherits
limitations of the open-source software used in our prototype. As
an example, the open-source lexer that we used raises errors for spe-
cific regular expressions encountered in the wild. Hence, we cannot
analyze such handlers. We nevertheless believe this does not impair
the conceptual applicability of our approach. Unfortunately, arbi-
trary programs might induce further issues. In particular, behavior,
such as changes to prototypes, usage of implicit type conversions,
complex objects such as Sets or Maps, need further modeling.

Additionally, relying on SMT solvers naturally comes with the
limitation that satisfiability is NP-complete. We have seen in our
analysis that a total of 21 constraints could not be solved due to
timeouts. While this is a general limitation that any such analysis
faces, there are nonetheless two conclusions we can draw from this
limitation. First, if we think of applying PMForce in a development
environment, any of the costly operations that lead to timeouts can
be rewritten by developers to produce constraints that are easier
to test for. For example, we have seen that performing further
operations on strings split by a separator, e.g., when passing several
values inside one string, quickly exceeds the capabilities that Z3
can solve in reasonable time. However, since postMessages allow
for arbitrary serializable objects, those values could also be sent as
an array. Furthermore, developer feedback might further be useful
to steer the forced execution away from unsolvable paths in the
program, e.g., paths that only work for legacy browsers.

Secondly, even in those cases where constraint solving fails, the
output of our force execution paired with the taint analysis provides
precise information about the constraints that need to be fulfilled
to reach a critical path in the program. This information can then
be used in further manual analysis to verify exploitability.

6.2 Security and Privacy Issues in postMessage
Handlers are Still Prevalent

Son and Shmatikov [24] showed with their manual analysis of
postMessage handlers back in 2013, that they are a prime target for
XSS and even allow attackers to manipulate the state of the site.
Compared to today, the number of sites making use of postMessage
and in particular the sheer number of handlers has exploded. During
our analysis of the top 100,000 sites we found 27,499 handlers and
looking at the top 10,000 specifically we could find 7,599 hash-
unique handlers. Comparing this to the amount of handlers found in
2013 this constitutes an increase by a factor of 55. While the number
of handlers that are vulnerable did not increase accordingly and is
slim compared to the overall corpus of all handlers, this highlights
the need for an automated analysis.

Furthermore, our results beg the question of how we can better
support developers in securing their sites. We think that providing
tool support is a first step in helping developers understand the
dangers associated with insecure postMessage handlers; however,
we also believe that we should reconsider making the postMessage

API secure by default. While an investigation of how we can adapt
the postMessage API to make it secure and usable for developers
in this work would not do it justice, we nonetheless want to high-
light two observations that we hope to be influential for developers
and standard authorities alike. First, most of the handlers that pro-
tect sensitive behavior implement origin checks correctly. Second,
postMessage relays can undermine the security of correct origin
checks. PMForce could be used by a first party to vet their trusted
third-party scripts, not to include such a relay. Overall, we hope
that our work raises awareness and re-opens the discussion about
the security of the postMessage API.

6.3 Ethical Considerations
During our large-scale analysis, we try to impact the live versions
of the web sites as little as possible, while allowing a thorough
assessment of the threat landscape. We restrict our crawlers not
to visit more than ten pages of any given site and produce similar
resource consumptions as an average user visiting the page and
clicking through 10 subpages. We notified the affected parties if
we could find any contact on their sites or using well-established
security reporting mechanisms (VRPs or security.txt). We have
already heard back from some vendors and are in active discussions
in assisting them in implementing appropriate fixes for the en-
countered vulnerabilities. We firmly believe that making PMForce
available helps developers uncover postMessage handler related
issues before being exposed to the public in production systems.

7 CONCLUSION
We showed that the amount of postMessage handlers has increased
tremendously over the recent years, rendering any manual efforts
to measure the security- and privacy-relevant behavior inept.

We tackle these issues by presenting an in-browser solution that
can selectively apply forced execution, and dynamic taint analysis
to postMessage handlers found while crawling the 100,000 most
popular sites. We track data flows originating from the received
postMessage into sensitive sinks such as eval for code-execution
flaws and document.cookie for state-alteration flaws. Once we
encounter such potentially dangerous flows, we utilize path con-
straints collected in our execution framework augmented with what
we dubbed Exploit Templates and solve all these constraints using
state-of-the-art SMT solvers. Doing so shows that most behavior
exhibited by handler functions found in the wild can be represented
in our chosen constraint language.

We use the assignments generated by the constraint solver to
create exploit candidates that we validate automatically with the un-
instrumented handler functions. Doing so allows us to automatically
uncover abusable flaws in 111 handlers, which affect 379 sites, out of
which 80, affecting 219 sites, do not perform any origin checks, such
that a web attacker can trivially exploit those. Contrary to previous
analyses, we show that the majority of origin checks protecting
sensitive behavior are implemented correctly; thus, no longer allow
an attacker to bypass them. Additionally, we report on an analysis of
the threat of postMessage relays and privacy leaks via postMessage
handlers showcasing how our framework can be further used to
uncover flaws in real-world sites.



Table 2: Exploit Templates used

regular expression sample code context

T1 /^alert\(1\)\/\*(.*)\*\/$/ if(event.data.indexOf('foobar') !== -1){
eval(event.data)

}

T2 /^\(alert\(1\)\/\*(.*)\*\/\)$/ if(event.data.indexOf('foobar') !== -1){
eval('('+event.data+')')

}

T3 /^\/\*(.*)\*\/alert\(1\)$/ if(event.data.indexOf('foobar') !== -1){
eval(event.data)

}

T4 /\.toString\(\),alert\(1\)$/ eval('globalLib.' + event.data.fun)

T5 /=1,alert\(1\)$/ eval('foo=' + value)

T6 /\(function\(\){alert\(1\)}\)\(\);\/\/(.*)/ let fun = eval('function(){' + value + '}')

1 // site 1, with origin check
2 function actual_functionality(e) {
3 if (e.origin == 'https://foo.com') {
4 eval(e.data);
5 }
6 }
7
8 // generic handler on which we calculate structure uniqueness
9 function dispatcher(e) { actual_functionality(e) };
10 window.addEventListener("message", dispatcher);
11
12 // site 2, no origin check
13 function actual_functionality(e) {
14 eval(e.data)
15 }
16
17 // generic handler on which we calculate structure uniqueness
18 function dispatcher(e) { actual_functionality(e) };
19 window.addEventListener("message", dispatcher);

Figure 10: Example of simple dispatcher functions

A EXPLOIT TEMPLATES
Table 2 represents examples of our templates that capture all con-
texts that we currently cover for JavaScript sinks. Note that while
the template is represented as a regular expression, we used startsWith-
/endsWith constraints to lessen the burden on the SMT solver.
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