
Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild

Leon Trampert
leon.trampert@cispa.de

CISPA Helmholtz Center for
Information Security

Ben Stock
stock@cispa.de

CISPA Helmholtz Center for
Information Security

Sebastian Roth
sebastian.roth@cispa.de

CISPA Helmholtz Center for
Information Security

ABSTRACT
In order to mitigate the effect of Web attacks, modern browsers
support a plethora of different security mechanisms. Mechanisms
such as anti-Cross-Site Request Forgery (CSRF) tokens or nonces in
a Content Security Policy rely on a random number that must only
be used once. Notably, those Web security mechanisms are shipped
through HTML tags or HTTP response headers from the server to
the client side. To decrease the server load and the traffic burdened
on the server infrastructure, many Web applications are served via
a Content Delivery Network (CDN), which caches certain responses
from the server to deliver them to multiple clients. This, however,
affects not only the content but also the settings of the security
mechanisms deployed via HTML meta tags or HTTP headers. If
those are also cached, their content is fixed, and the security tokens
are no longer random for each request. Even if the responses are
not cached, operators may re-use tokens, as generating random
numbers that are unique for each request introduces additional
complexity for preserving the state on the server side. This work
sheds light on the re-usage of security tokens in the wild, investi-
gates what caused the static tokens, and elaborates on the security
impact of the non-random security tokens.

CCS CONCEPTS
• Security and privacy → Web application security.

KEYWORDS
Web Security, CSP Nonces, CSRF, Security Tokens
ACM Reference Format:
Leon Trampert, Ben Stock, and Sebastian Roth. 2023. Honey, I Cached
our Security Tokens Re-usage of Security Tokens in the Wild. In The 26th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID ’23), October 16–18, 2023, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3607199.3607223

1 INTRODUCTION
ThemodernWeb is nowadays used for amyriad of different services,
from governmental services, over entertainment, up to fully-fledged
office applications that are running in browsers; nearly everything

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10…$15.00
https://doi.org/10.1145/3607199.3607223

can be done on the Web. Due to this importance, Web sites need
to deal with security- and privacy-sensitive data of their users,
which is also the reason why they are one of the primary targets
for attackers. While the attack surface of a Web application is quite
large, there is a plethora of different security mechanisms available
to defend a site against malicious actors.

One example of such an attack is a Cross-Site Request Forgery
(CSRF), where the attacker performs an action on a Web applica-
tion that the victim is authenticated on without the knowledge
or consent of that victim. To mitigate this attack, a per page and
user unique value (a so-called anti-CSRF token) can be generated
and added to each form of the delivered page. This token is then
sent to the server along with any submitted form, allowing the
server to verify that the request was made by the same user that
visited the page and not by an attacker. Because those secrets are
supposed to be random for each request and user, an attacker can
not guess those and, thus, not create valid state-changing requests
to the server on behalf of the user.

Another vulnerability that is omnipresent in the OWASP Top 10
Web Application Security Risks [23] is Cross-Site Scripting (XSS),
where an attacker can inject malicious code in the context of a Web
site, such that this code has the same access rights as benign code
from the site itself. To restrict this unintended code execution, a
Web site’s operator can deploy a Content Security Policy (CSP) [41].
One way of marking trusted JavaScript as executable is to add a
nonce (”number used once”) to the corresponding script tag and the
header-delivered policy. Because those nonces are supposed to be
random for each request, attackers can not guess them and thus
not execute their malicious scripts.

Notably, both of the aforementioned mechanisms (Anti CSRF
Tokens & CSP Nonces) rely on random secrets per request and user
to work correctly. However, generating unique random numbers
for each request introduces additional complexity for the operator
as they must keep state on the server side. In addition to that, many
Web sites use a Content Delivery Network (CDN) [9] to decrease
the server load and the traffic that is received by their infrastruc-
ture. This feature is achieved by caching certain responses from
the application server (mostly referred to as the origin server) and
serving them to multiple requesting clients without forwarding the
request to the origin server. This caching affects all parts of the
response, so HTML forms, meta tags, and HTTP response head-
ers. Those, however, are the parts where the random values for
CSP nonces and Anti-CSRF Tokens are stored. Thus, delivering the
same value to multiple clients undermines the protection offered
by those security mechanisms. A Web operator must ensure that
no dynamic content, such as content with embedded supposedly

https://doi.org/10.1145/3607199.3607223
https://doi.org/10.1145/3607199.3607223

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

random tokens, is cached. Misconfigurations of server-side caches
thus may compromise the security of a Web application.

Mirheidari et al. [21, 22] investigated the dangers of Web Cache
Deception (WCD) attacks, where an attacker abuses the fact that
CDNs may be configured to cache content purely based on the
suffix of the request URL. Thus, this kind of attack can be abused
to leak session IDs, CSRF tokens, or CSP nonces, but it requires an
attacker to force their victim to first visit the crafted URL to populate
the cache. We, however, want to investigate if this attacker step
is necessary, by determining if, even without the presence of an
attacker, Web sites (accidentally or intentionally) cache security-
related tokens. To do so, we measure the prevalence of reoccurring
CSP nonces and Anti-CSRF tokens for the 10,000 highest-ranking
sites based on Tranco [27]. In particular, we find that 10-15 percent
of sites employing such security tokens suffer from reoccurring
tokens. We check if nonce re-usage is due to caching behavior by
checking for response headers that indicate cache hits or misses
and those that indicate the age of the resource. Here we noticed
that cache or CDN misconfiguration is likely one of the root causes
of reoccurring tokens in the wild. Finally, we quantify the security
implications of reoccurring security tokens and also investigate
guides and hints provided by CDN providers to assist during the
configuration. Reoccurring CSP nonces effectively disable the CSP
in the case of a client-side XSS vulnerability. Similarly, reoccurring
anti-CSRF tokens either degrade the user experience or may lead
to developers disabling server-side token validation to allow for
proper functionality.

This paper presents the following contributions:
(1) We measure the prevalence of security token reoccurrence

in the wild by analyzing the 10,000 highest-ranking sites
based on Tranco [27].

(2) We investigate if the security tokens’ reoccurrence is likely
to result from a cache misconfiguration by checking cache-
related header information.

(3) We quantify the security implication of using non-random
security tokens in different scenarios.

2 BACKGROUND & RELATED WORK
In this section, we provide the necessary background for our work
and survey the related papers. We first introduce XSS and its miti-
gation, CSP, followed by a discussion of CSRF attacks and counter-
measures. Finally, we provide a high-level overview of CDNs.

2.1 Cross-Site Scripting and Content Security
Policy

The most basic security mechanism built into modern browsers
is the Same Origin Policy (SOP), which restricts access from Web
sites to only those that share the same protocol, hostname, and port.
Without this policy, an attacker’s JavaScript code could simply read
the victim’s email in the context of their logged-in Gmail session.
An attacker can, however, leverage a Cross-Site Scripting (XSS)
vulnerability to circumvent this restriction. With XSS, the attacker
finds a flaw in the target application (e.g., Gmail) and injects their
code into the page. This way, the attacker-controlled code now
operates in the origin of the vulnerable application, allowing it to
access anything that legitimate code could.

Cross-Site Scripting is typically categorized into two-by-two
dimensions: it can be caused by either insecure server- or client-side
code, and it can persistent or might originate from the request itself
(also called reflected). Arguably the most impactful class of XSS is
persistent server-side XSS, as it targets all users of the application.
In contrast, both classes of reflected XSS require the attacker to
force the victim’s browser to make an HTTP request which contains
the payload within the URL, e.g., in the search parameters or the
so-called URL fragment (the data after the # sign). Notably, the URL
fragment is not sent to the server in the request, but can instead only
be accessed by the client-side code. Finally, persistent client-side
XSS requires a one-time infection of persistent client-side storage
(e.g., cookies or localStorage). Once this injection has occurred, the
payload is retrieved on the client for each page load [36].

According to the OWASP Top 10 Web Application Security Risks
[23], XSS has been one of the most prominent security issues for
Web sites for multiple years. Of particular interest on the Web have
been studies of client-side XSS (initially dubbed DOM-based XSS
by Klein [16]), primarily given the fact that these can be confirmed
without having to send attack payloads toward servers [18, 20, 25,
36]. These works showed that around 10% of the tested sites were
susceptible to the different types of client-side XSS. In addition, the
ever-growing variety of XSS [11, 12, 15, 17, 33? ?] as well as the
lacking success of the different defense approaches [4, 10, 32, 35, 39],
are indicating that XSS is here to stay.

A way to mitigate Cross-Site Scripting is the usage of a Content
Security Policy (CSP), initially proposed by Stamm et al. [34]. The
core idea of CSP is not to eradicate XSS flaws but instead limit the at-
tacker’s capabilities through an allowlist of scripting resources [41].
A Web server can specify such a policy through HTTP response
headers or in HTML meta tags. This policy is then parsed and
subsequently enforced by the browser. Hence, a secure CSP can
limit the attacker to a point where the XSS flaw can no longer be
meaningfully exploited.

In order to mitigate XSS attacks, the site’s operator has to set a
script-src (or alternatively a default-src) directive. By default, this
directive forbids the execution of inline JavaScript, such as inline
script tags or inline event handlers, and also disables the usage of
JS functions that are doing a string-to-code conversion, such as
eval. Moreover, the directive specifies a list of allowed URLs for
script inclusion. When attempting to load a script from any URL,
the browser, therefore, checks if that resource is permitted through
CSP before attempting to execute it as JavaScript.

The original specification of CSP was quickly shown to lack
adoption in the wild [40]. One of the primary reasons for this
was the inflexibility dictated on developers by CSP. In particular,
given CSP’s default behavior to disallow inline scripts and event
handlers, developers with applications full of these were faced
with a conundrum: either they would have to conduct significant
refactoring to rid their application of inline scripts (notwithstanding
third-party code which might interfere [35]) or they would be
required to add the 'unsafe-inline' keyword to their policy. This
explicitly allows any inline scripts again – irrespective of whether
they are developer-intended or attacker-injected.

To overcome this shortcoming, CSP Level 2 introduced the con-
cept of hashes and nonces. With hashes, developers can specify
the cryptographic hash of their intended inline scripts in the CSP.

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Content-Security-Policy:

script-src 'nonce-ABCDEF0123456789 '

https: // example.com /;

Figure 1: Example CSP that uses nonces to restrict script
execution

<script nonce="ABCDEF0123456789">

benignJSFunction ();

</script>

Figure 2: Example script tag with a nonce attribute

Before executing an inline script, the browser then computes the
hash of its source code and only executes the code if the hash
match. While this can be beneficial to enable inline scripts that
rarely change (and thus rarely require re-computing the hash), it
suffers from drawbacks when inline scripts contain user-specific
data (e.g., the user’s name). Therefore, CSP also supports the use of
nonces. As the name suggests, a nonce is a number only used once.
This nonce is sent through the CSP and is supposed to be attached
to any script intended by the developer. Figure 1 shows an example
of a CSP that allows scripts that carry the specified nonce.

The browser then determines for a given script (both inline and
external) if the nonce provided in the nonce attribute of the script
tag matches with the CSP-specified one. Figure 2 shows an example
of such a script tag. If the nonce matches the one from the CSP, the
code is executed. Otherwise, and only for an external script, the URL
is checked against the allowlist, and if there is no match, execution
is refused. Notably, nonces cannot be used to allow inline event
handlers. This is only possible through hashing the content of the
event handler and specifying the experimental 'unsafe-hashes'
keyword [41].

Priorwork has studied CSP in depth frommultiple angles. Several
works have documented the status quo for a specific point in time [4,
39, 40] or have studied the evolution over time [30]. To ease the
deployment of CSP for developers, Doupé et al. [10], Pan et al. [24]
have proposed automated systems to generate secure CSPs and
perform code rewriting. Nevertheless, as documented by Steffens
et al. [35], Web applications seldomly run purely on first-party code,
and third parties play a crucial role in the lack of success of CSP.
As a result, secure CSPs with nonces or hashes are still uncommon
in the wild. This is also caused by the complexity of the mechanism
itself, which was recently documented by Roth et al. [32] through
an interview study.

2.2 Cross-Site Request Forgery
Authentication on the Web is usually implemented through the
usage of cookies. These small snippets of data are associated with a
domain or host and sent along in the headers of an HTTP request
toward matching URLs. These cookies are attached irrespective
of who is the initiator of the request [1] (unless SameSite cookies
are activated, which currently is only true by default for Chrome
derivatives). This behavior enables a class of attacks commonly

referred to as Cross-Site Request Forgery (CSRF). Here, a malicious
actor causes a victim’s browser to perform an unwanted action on
a vulnerable site when the victim is authenticated. As an example,
let us consider a simple banking application. This likely features
a form with the target bank account number, an amount, and a
description for the transaction. An attacker can thus simply set
up their own form (on their site), for which the form’s action
field (which specifies the target URL to post the data to) points to
the banking site. Upon loading the page, the attacker’s pre-filled
form (with their own bank details in place) can be automatically
submitted through JavaScript, i.e., simulating a user clicking the
submit button. If a victim is logged into their bank application and
visits the attacker’s page, their browser will automatically make
the request to the bank, causing the unwanted action.

Other classes of CSRF attacks include login CSRF [2], where the
attacker forces the victim to log into the attacker’s account on some
service.While this may sound counterintuitive initially, it allows the
attacker to track their victim’s activities, e.g., following their search
history, since that history is now tied to the attacker’s account.
Moreover, CSRF attacks can be leveraged to exploit reflected server-
side XSS flaws, e.g., in search fields, which insecurely reflect the
search query.

There are different ways of mitigating CSRF attacks. First, the
SameSite directive in cookies can be used to mitigate the issue
(in supporting browsers). If set to Lax, browsers will not attach
cookies to requests that originate from a different site, except for
top-level navigation through safe HTTPmethods such as GET. If set
to Strict, cookies will not be sent on any type of cross-site request.
However, SameSite cookies come with their own drawbacks: first,
legacy browsers do not support them, making them prime targets
for CSRF attackers. Second, they do not protect from a cross-origin,
yet same-site attacker. For example, an attacker capable of com-
promising a bank’s test system (at https://test.bank.com) can
leverage this to force the victim’s browsers to make requests to
https://banking.bank.com. Third, and most importantly on the
modern Web, restricting cookies to SameSite may hurt third-party
business models. As an example, if SameSite cookies are enabled,
like/share buttons cannot be customized to the user, as these frames
are typically sub-resources loaded across site boundaries.

Given the limitations of SameSite cookies in terms of functional-
ity on the modernWeb and their lacking support in legacy browsers,
the best practice to defend against CSRF is the usage of random
CSRF tokens. Usually, there are two types of mitigation techniques.
First, applications can rely on the so-called Synchronizer Token Pat-
tern [19]. Here, the server generates a token for each user’s session,

<form action="/login" method="POST">

<input type="text" name="email">

<input type="text" name="password">

<input type="text" name="csrfToken" hidden

value="35 a762fec5e963934ce06bb16c0528af">

</form>

Figure 3: Example HTML form tag that includes an
anti-CSRF token.

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

Cloud
CDN

style.css

index.php

style.css

style.css

index.php

1 1

22

3

Figure 4: Simplified CDN architecture

stores it in its database, and adds it to the forms presented to the
client. Figure 3 shows a login form that includes such a token in a
hidden input field. When a user manually fills the form within the
application, the token is posted alongside the other field. The server
can then determine if the provided token matches the one it gen-
erated for that user earlier. Since the token is only accessible from
within the application itself (protected through the Same-Origin
Policy), an adversary cannot learn the token, thus stopping the
CSRF attack. Notably, the token needs to (i) be tied to a specific user
session and (ii) should change on every request to avoid replaying
stolen tokens. Moreover, the token must also not be guessable by an
attacker, e.g., simply a timestamp combined with the user’s name.

The second mitigation technique are so-called Double Submit
Cookies. Here, a pseudorandom token is generated either on the
server or the client side. The token is sent in a request to the server
as a cookie and as part of the posted data. The server then de-
termines if the cookie value matches the value in the posted data.
While this approach offers the same protection regarding the cookie
being inaccessible to the attacker, making it impossible for them
to ascertain the token, it does not require the server to keep any
state. However, double submit cookies are prone to attacks from
the site, yet different origin, as an attacker would then be able to
simply set the anti-CSRF cookie to their liking. Thus, site operators
should instead rely on the Synchronizer Token Pattern.

Prior work in the area of CSRF has developed approaches to find
potential CSRF flaws [26] in open-source projects. Moreover, Likaj
et al. [19] investigated the implementation (or lack thereof) of CSRF
countermeasures in popular frameworks. Finally, Calzavara et al. [3]
developed a machine-learning system dubbed Mitch to find CSRF
vulnerabilities in the wild, finding 35 previously undisclosed flaws
in 20 major Web sites. Notably, though, none of these works have
attempted to understand the implications of improper randomness
of such tokens in the wild.

2.3 Content Delivery Networks
A content delivery network (CDN) is a service which provides many
geographically distributed servers which can be used to serve assets
of aWeb site or even entireWeb pages to fasten the content delivery
and lower the load of the actual origin server. In order to do so, it
caches the assets (or the pages) and delivers them to clients such
that the original server needs to handle fewer requests. Content

will be cached depending on their file extensions, the presence
of query strings, cache-control headers sent by the origin server,
and the presence of other origin headers that indicate dynamic
content (e.g., Set-cookie). A simplified architecture is depicted in
Figure 4. Here, the first client requests style.css from the CDN
server. Since this file has not been cached yet, the CDN picks one
of the configured origin servers and requests the file. Subsequently,
given it is a static resource, the file is cached. The second client
instead accesses index.php, which is then retrieved from another
origin server. This resource is dynamic based on the user’s session
and should, therefore, not be cached. Finally, a third client requests
the previously cached style.css file, which is served from the
cache without requiring additional round-trips to any of the origin
servers.

Prior work has already investigated the security implications
of such architectures. Two recent works, Mirheidari et al. [21, 22]
highlighted the dangers of Web Cache Deception (WCD). Here,
the attacker abuse the fact that CDNs may be configured to cache
content based purely on the suffix of the request URL rather than
the content or headers from the origin server. This way, an attacker
can trick the CDN into caching a file, which is actually specific for a
user’s session. Still, because the attacker forces the victim to request
it with a cacheable suffix (e.g., index.php/style.css), it matches
the caching rules. Their work primarily highlighted that attackers
can use WCD to leak personally identifiable information of a user.
In the second work [22], they discussed that WCD can also be used
to steal session IDs, CSRF tokens, or CSP nonces. This, however,
requires the attacker to force their victim to first visit the crafted
URL to populate the cache, steal the token in a separate request
from the attacker to the CDN, and then attack their victim. In
contrast, our work aims to determine if, even without the presence
of an adversary, CDNs (accidentally or intentionally) cache security
tokens.

3 THREAT MODEL
At the core of our research lies the question: how is randomness
used on the Web to aid sites in mitigating Cross-Site Scripting and
stopping Cross-Site Request Forgery attacks? To answer this, we first
survey the usage of token-based security for highly ranked sites.
This allows us to ascertain the pervasiveness of such defense mech-
anisms in general, as well as to then study the security implications
of improper usage of randomness. Second, in case the tokens are
not entirely randomly chosen, how do sites implement the security
mechanisms instead? Generally speaking, such security tokens can
fall into three cases:

(1) static tokens are those that are fully static and do not change.
(2) reoccurring tokens are re-used for a certain amount of time

or from a rotating pool but are not static.
(3) predictable tokens are based on predictable information such

as timestamps, but not reoccurring.

3.1 Implications for CSP Nonces
For CSP nonces, the usage of a static value is effectively the same
as relying on 'unsafe-inline'. To attack a server, the adversary
builds their payload (assuming they have found an XSS vector, of
course), visits the site once to extract the static “nonce” and adds this

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

to their script. Hence, while such a configuration seemingly avoids
the dreaded 'unsafe-inline' keyword, it offers no protection
beyond it.

Similarly, if nonces are reoccurring, be it they are valid for some
time or come from a rotating pool, the attacker can simply collect
the currently used tokens and opportunistically attack their victim.
Concretely speaking, for a set of possible nonce candidates, the
attacker simply adds one iframe pointing to the vulnerable page
(assuming a reflected XSS) per nonce candidate. This way, even
though many of the requests will likely fail to contain the correct
nonce, exploitation is still feasible.

Finally, for nonces that are predictable, the attacker does not have
to guess anything. Instead, if the algorithm of nonce generation is
deterministic and known to the attacker (e.g., through simply using
a timestamp), they build the payload with the predetermined nonce
and force their victim to visit that page.

Notably, for nonces that are not entirely static, but instead are
caused by CDN caches, an attacker may be limited. Specifically, for
server-side Cross-Site Scripting flaws, any change in the requested
URL would lead to a new request towards the origin server. If this is
configured to randomly generate a nonce, the attacker cannot build
a payload, which contains the correct nonce, as a new payload
inevitably triggers a new origin server response; which in turn
carries a new nonce. Nevertheless, in the CDN scenario, client-side
XSS threats are still valid, since the payload may originate from
insecurely using client-side storage (such as LocalStorage) or parts
of the URL fragment (which is not sent in the request).

3.2 Implications for Anti-CSRF tokens
Considering CSRF tokens, having entirely static values may cause
two types of issues: first, if the token is actually static, an attacker
can simply extract it once and run their attacks. This also applies
to tokens used in the double submit cookie technique, since an
attack page can issue a hidden request to the victim page before
performing the state-changing action to load the known cookie
for the victim. Such hidden requests can be issued using hidden
iframes, images, or even XHR requests, as long as the response
contains the set-cookie header used in the double submit cookie
technique.

If, instead, the lack of randomness comes from caching, any
validation of the CSRF token on the server side should work, as
the server would not even have generated a token for the user’s
session in the first place. Hence, having cached CSRF tokens either
leads to functionality breakage or insufficient validation. Note that
some stateless token validation mechanisms (incl. standard double
submit cookie technique) will also provide insufficient validation
since they are detached from user sessions. Here, hidden requests
can be used to set the known anti-CSRF value in the cookie for a
victim.

If tokens are predictable or caused by origin servers using tokens
from a fixed pool, the adversary can again launch an opportunistic
attack. Similar to the attack outlined before for CSP, the adversary
creates a set of iframes with prefilled forms, one frame per candi-
date token. When the victim then visits the attacker’s page, all the
forms are automatically submitted to the target server. Notably, con-
trary to XSS where the attacker’s injected code can directly provide

feedback of successful execution (e.g., by sending a PostMessage
to the attacker’s page), the effect of CSRF might not be immedi-
ately visible. Nevertheless, the opportunistic attack is sufficient to
undermine the security guarantees intended by Anti-CSRF tokens.

4 METHODOLOGY
Now that we have an understanding of both the considered security
mechanisms and the potential threats, we outline our methodology
for studying this problem at scale. In this section, we thus first
explain details of our data collection procedure, i.e., how we deter-
mine a set of candidate sites for further inspection. Subsequently,
we outline how we perform the validation to confirm the nature of
the token re-usage and, finally, discuss how we detect the usage of
a CDN.

4.1 Data Collection
We crawled the highly ranked Top 10,000 sites from the Tranco list
[27] generated on February 22, 20231. In addition to loading the
site’s landing page, we also loaded all subpages that the landing
page references up to a limit of 100 subpages. For each page load, we
used a clean Chromium instance instrumented by Puppeteer such
that browser caches would not interfere with our data collection.
To see if a token is re-used, we loaded each of the pages five times to
get multiple security tokens from the same request, but also make
sure that we do not miss tokens due to randomly missing security
headers as shown by prior work [31]. Note that it is not problematic
if the first request is already served from a web cache, since we
only want to detect reoccurrences.

While extracting CSP nonces from the respective HTTP header
or the meta tag is trivial, detecting Anti-CSRF tokens is not. This is
because the developer of the application or framework can freely
choose the names of the token fields. Therefore, we decided first
to investigate how popular Web frameworks such as Django, Dru-
pal, ASP.NET, Spring, etc., name their anti-CSRF tokens. Here we
noticed that in each of those cases, the string token or csrf were
present in the name of the token. Hence, we collect input fields
from all form tags in the crawled HTML where the name case-
insensitively contained either token or csrf. token is, however,
frequently used in various scenarios. For example, CAPTCHAs,
which are embedded on many sites, often use captcha_token as a
name. Thus, we restrict all following steps to the subset of token
names that case-insensitively contain csrf or match the name of
tokens employed by a popular framework.

In particular, we match the following token names:
• authenticity_token (Ruby on Rails2)
• __RequestVerificationToken (ASP.NET3)
• form_token (Drupal4)
• _xfToken (XenForo5)

The tokens of other popular frameworks, such as Java Spring
(_csrf), are already covered, as they contain the substring csrf.
Other frameworks, such as Laravel or Symfony use more generic

1Available at https://tranco-list.eu/list/X57NN
2https://rubyonrails.org/
3https://dotnet.microsoft.com/en-us/apps/aspnet
4https://www.drupal.org/
5https://xenforo.com/

https://tranco-list.eu/list/X57NN
https://rubyonrails.org/
https://dotnet.microsoft.com/en-us/apps/aspnet
https://www.drupal.org/
https://xenforo.com/

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

Token Name Framework #Sites

authenticity_token Ruby on Rails 345
__RequestVerificationToken ASP.NET 190
_csrf Java Spring 130
csrfmiddlewaretoken Django 103
csrf_token - 100
_csrf_token Symfony 33
form_token Drupal 25
_xfToken XenForo 24
csrf - 24
csrfToken cahePHP 23

Table 1: Number of sites that used a certain anti-CSRF token
name and which prominent Web framework uses this name

as the default.

names such as _token. As we want to report a lower bound of the
problem and this token name is too ambiguous, we discarded the
results for the 163 sites that use this token name. The token names
were restricted after manual investigation of the values hinted at not
only anti-CSRF tokens being captured. The manual investigation
was unable to detect tokens not used for CSRF mitigations in the
final selection.

Table 1 shows the top ten anti-CSRF token names used in the top
10k domains that match our pattern. In particular, we can see from
the distribution that Ruby on Rails, ASP.NET Core, and Django
appear to be popular frameworks. The default behavior of those
frameworks is to deploy those tokens random for each request and
user. Thus, a reoccurring CSRF token would lead to errors, as the
token can not be validated multiple times.

Although our crawl is performed with a real browser, anti-CSRF
token values could be injected dynamically upon submission of
the form. We would need to submit all forms with an empty value
to collect those. To not cause state-changing actions and to not
put unnecessary load on the server, we then need to intercept all
requests that result from the form submission. Identifying those
requests is not trivial as Web sites can use the event.prevent-
Default function in the onsubmit handler to abort the form sub-
mission in JavaScript and send XMLHTTPRequest (XHR) requests
instead. Another problem is that some forms in the wild require
CAPTCHAs to be solved before they can be submitted, which we
cannot do automatically. Therefore, we only consider name-value
pairs that are delivered with the token in the value of the HTML
input tag and exclude all occurrences of anti-CSRF tokens where
the input tag’s value is empty.

4.2 Analysis
As outlined in Section 3, we consider three types of token re-usage:
static, reoccurring, and predictable tokens.

According to the CSP standard [41], CSP nonces should follow
the base64 alphabet. However, in practice, this requirement is not
checked in modern browsers. In general, randomness has to be
encoded somehow to deliver it as printable characters. Thus, both,
CSP nonces and anti-CSRF tokens are often delivered encoded.

To detect predictable tokens we applied common decoding proce-
dures on the Web to see if meaningful output can be recovered. We
used the following algorithms for decoding the gathered tokens:

• Standard Base64 decoding
• URLsafe Base64 decoding
• Base32 decoding
• Base16 decoding
• Hexadecimal decoding
• Binary decoding

As soon as one of those decoding functions returned a string that
only contained printable characters (punctuations, digits, ASCII
letters, and whitespaces), we manually investigated those values to
see if they followed a particular pattern (e.g., if a pattern appeared
to be a UNIX timestamp).

To detect reoccurring tokens, we further investigate all domains
that featured which for = different requests to a URL showed =

CSPs with a nonce, yet had less than = distinct CSP nonces. In other
words, a site has reoccurring nonces if we received at least one
nonce multiple times.

In the case of CSRF tokens, we apply the same logic. Here, we
only look at values for the same parameter name and identify
cases where a token appeared more than once. Naturally, we would
expect that for each URL on each visit we receive a different token.
If we now have fewer distinct tokens per URL across each visit, we
received at least one token multiple times for different visits. Thus,
at least one token is reoccurring.

Last but not least, the final case relates to static tokens. If we
repeatedly see a token-based approach being used (i.e., either all
responses have a CSP nonce or CSRF token field), we check to see
if this token is the same every time. In that case, we consider the
token fully static.

4.3 Validation
We performed our initial crawl again for all domains where the
number of distinct nonces that we found during our initial crawl
was less than the total number of nonces for a given domain. No-
tably, our validation crawl did not gather any URLS but only visited
the URL where we encountered the problem. Also, to avoid burden-
ing too much load on the servers, we only pick one single URL per
page. To be consistent, we use the shortest URL. This should not
be an issue under the assumption that developers apply the same
principle across different forms and across different nonce-based
CSPs of the application. If the token on the URL we visit shows the
same behavior as in the original crawl, we mark them as validated.

4.4 Detecting CDN & Cache usage
To assess if the usage of caching is the reason for the token reoccur-
rences, we also gathered the response headers of all responses from
our validation crawl. CDN providers and other caches usually add
additional headers to the responses to indicate cache hits or misses.
As the name of those headers is not standardized, we checked for
the occurrence of the string hit or miss in the lowercase value
of the response headers. Also, other headers such as last-modified,
date, or age can indicate the usage of cached responses.

In the case of CDN caches, the CDN can be configured not to send
this information. Similar settings can be done for custom solutions

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

such as Squid, nginx, and Apache HTTP Server. Thus, in addition to
the header data, we also detect the usage of a CDN via DNS. Using
a CDN for the caching of HTML requires changes to the DNS setup.
Thus, we employ the following DNS-based CDN detection for a
domain: First, we query all A records for the domain. Afterward, we
use the IP to ASN mapping service by Team Cymru6 to retrieve the
autonomous system number (ASN) for each of those IP addresses.
The ASN provides us with hints information that hints towards a
CDN provider, as we have a mapping between AS name and the
relevant providers we consider. We can conclude that a domain
uses a CDN with a very high probability if at least one of the A
records points to a CDN.

In order to check if cache usage is the root cause of the reoccur-
rence, we checked if the cache headers are indicating hits on each
reoccurrence or if specific headers are changing their value if reoc-
curring nonces are changing. With the headers, we have a strong
indication that caching is the issue since we can find cases where
for example, the last-modified header indicated the freshness of
the response. Thus, if we have multiple reoccurring nonces that
are reoccurring with the same last-modified header, we have a
strong indicator that the nonce is reoccurring due to a cache and
thus not a fresh response. Therefore, those numbers will serve as
lower bounds here, while the usage of a CDN according to the ASN
is an upper bound for the usage of CDNs as a root cause.

4.4.1 Global vs. Local Cache Detection. Roth et al. [31] have shown
that different vantage points can lead to different security header
configurations because they cache responses from different ori-
gin servers or some cache a fresher version of the site than other
countries.

In order to observe the difference between localized and global
caches, we use multiple vantage points to see how and which kinds
of caches interfere with the freshness of security tokens. Here,
we classify a site as having a global cache if token overlap exists
between some pair of vantage points.

To programmatically issue requests from different vantage points,
we use different TOR proxies and perform the requests through
those via Python Requests.We configured the proxy using SOCKS5h,
such that python requests will also resolve its DNS via the proxy
7. This way, we will get the IP of the CDN, which is closest to the
configured vantage point.

Notably, some sites check for a valid runtime environment to
mitigate the impact of DDoS attacks and to prevent simple crawlers
from accessing the site. 8 This is, for example, commonly done by
checking if cookies are supported by the engine before redirecting
to the actual content. The validation was conducted six times from
three different vantage points. We use two TOR proxy vantage
points with exit nodes in Singapore and the US, in addition to
the vantage point used for our initial crawl. Some sites, however,
specifically block requests originating from TOR proxies. In our
set of domains, we were blocked by nine sites due to the requests
originating from a TOR proxy. Interestingly, two out of these sites
showed us an error page without sending an appropriate HTTP
status code. We noticed this as these error pages did not feature

6https://www.team-cymru.com/ip-asn-mapping
7https://docs.python-requests.org/en/latest/user/advanced/#socks
8https://www.cloudflare.com/ddos/

Total CDN

Sites 7,210 4,500

Sites with CSP 3,489 2,730
Sites with Script-restricting CSP 1,855 1,479
Sites with Nonces in CSP 446 384
Sites with reoccurring Nonces in CSP 33 28
Sites with Static Nonces in CSP 41 37

Sites with Anti-CSRF Tokens 1058 837
Sites with reoccurring Anti-CSRF Tokens 152 137

Table 2: Overview of Token Reusage and CDN Usage in the
Top10k Sites

any CSP. If other sites did not send appropriate error codes, their
sites at least still featured a CSP with a nonce.

5 RESULTS
In the following sections, we present the results of our crawl of the
top 10k sites. Since many domains only redirected (e.g., youtu.be),
did not serve any Web content (windowsupdate.com), or were un-
reachable for other reasons, our analysis is restricted to 7,210 differ-
ent sites in the following sections. We shed light on CDN usage, as
well as the deployment of different types of Content-Security Poli-
cies and the use of anti-CSRF tokens. Finally, we present the share
of sites that featured reoccurring or static security tokens. Section 5
provides an overview of our results and the connection with CDN
usage, which are further discussed in the following sections.

5.1 CDN Usage
Table 3 shows the AS name distribution for all domains in our data
set. Cloudflare and Amazon Web Services serve as CDN for the
majority of sites. Akamai and Fastly follow in third and fourth place.
While Google’s and Microsoft’s CDN services still appear in the top
10, they only have a fraction of the presence the two dominant CDN
providers exhibit. This distribution closely matches the distribution
of the customer count of CDN providers released by Intricately
[13]. It is also important to note that CDN providers heavily use
their own services. In Table 3, this inflates the numbers attributed
to Amazon, Microsoft, and Google, as they each have multiple sites
in the top 10k.

2,491 (about 35%) sites featured more than one AS name. Fur-
thermore, about 62.5% of sites featured at least one of the aforemen-
tioned AS names attributed to CDN providers and thus most likely
used a CDN. This shows that CDN usage is widespread. However,
our numbers will likely be under-approximated since we do not
consider additional CDN providers or custom caching solutions.

In the following sections, statistics about CDN usage refer to a
site featuring at least one AS name in our data set’s top 10 most
prominent AS names (see Table 3).

5.2 CSP Nonces
Out of the 7,210 sites we visited in our initial crawl, 3,489 (48%)
domains featured a CSP. Prior work has established three use cases:
framing control (i.e., the frame-ancestors), TLS enforcement (i.e.,

https://www.team-cymru.com/ip-asn-mapping
https://docs.python-requests.org/en/latest/user/advanced/#socks
https://www.cloudflare.com/ddos/

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

block-all-mixed-content and upgrade-insecure-requests) and script
content restriction. Here, the usage statistics of our analysis closely
match the trends identified by previous works [30]. Only 1,855
(26%) sites deploy a script-restricting CSP. Most importantly, 446
domains (6%) use nonces. Note that nonces are used not only to
restrict scripting but also to define valid stylesheets (i.e., style-src).
In our data set, only one site used a nonce but did not restrict
scripting. The number of sites deploying a script-restricting CSP
may include sites that only perform TLS enforcement via a source
directive (i.e., script-src https:;). This is, however, a rare occurrence
in the top 10k sites (0.3%).

Figure 5 shows the nonce usage per rank group. In the plot, we
count the number of sites featuring any CSP, a script-restricting
CSP, and a CSP with nonce per rank group. A rank group combines
500 sites. In total, we thus aggregate these statistics for 20 different
rank groups (e.g., 1-500 and 501-1000). Interestingly, CSP usage
steadily declines with the rank of domains. Top-ranking domains
are more likely to deploy script-restricting policies and are also
more likely to employ nonces in those policies. Our observations
match the trends identified by previous works [30, 31].

5.2.1 Nonce Re-Usage. In total, we found 446 different sites that
used nonces in their CSP. Out of these, 74 (16.5%) sites feature
reoccurring or even static nonces. According to our definitions
in Section 4.2, 41 sites feature static nonces while 33 sites have

AS Name Sites

CLOUDFLARENET, US 1,970
AMAZON-02, US 1,477
FASTLY, US 596
AMAZON-AES, US 590
AKAMAI-AS, US 570
AKAMAI-ASN1, NL 425
GOOGLE-CLOUD-PLATFORM, US 245
MICROSOFT-CORP-MSN-AS-BLOCK, US 224
CLOUDFLARESPECTRUM, US 209
GOOGLE, US 187

Table 3: AS Name Distribution

1

50
1

10
01

15
01

20
01

25
01

30
01

35
01

40
01

45
01

50
01

55
01

60
01

65
01

70
01

75
01

80
01

85
01

90
01

95
01

Rank Group

0

50

100

150

200

250

N
um

be
r o

f d
ep

lo
ye

d
C

S
P

s

Any CSP
Script-restricting CSP
CSP with nonce

Figure 5: CSP Usage in Top 10k by 500 domain buckets

AS Name Sites

AMAZON-02, US 15
CLOUDFLARENET, US 11
AKAMAI-AS, NL 7
AKAMAI-ASN1, NL 6
HURRICANE, US 5

Table 4: Top 5 AS names for CSP with reoccurring nonces

reoccurring nonces. For 11 (15%) of those, the HTTP response header
indicated that all occurrences of the nonce resulted in cache hits.
Thus, those static nonces might only seem to be static but are
actually changing every few days depending on the time the cache
is valid. Out of the 33 sites with reoccurring nonces, only five did not
feature A records pointing to popular CDN providers. The top five
AS names for the domains are listed in Table 4. Our analysis of the
corresponding response headers showed that in at least 16 of those
33 cases, the CSP nonce only changes if and only if cache-related
headers such as last-modified, date, or age also change. We thus
observe a connection between reoccurring CSP nonces and caching
for at least half of the aforementioned sites.

5.2.2 Case Studies: reoccurring CSP Nonces. In the following, we
analyze notable exemplary cases representing issues we encoun-
tered during our analysis. Since incorrect implementations can vary
drastically, we discuss three distinct cases that highlight a range of
such incorrect implementations.

(1) Cache Misconfiguration: By analyzing the response head-
ers of a Web service that checks data leaks, we were able
to see that in this case, caches should be the root cause of
the problem. We received in total two different nonces from
this site, and the last-modified header is set to Sat, 18 Mar
2023 17:26:53 GMT for the first nonce and Sat, 18 Mar
2023 18:06:47 GMT for the second nonce. This indicates
that the TTL of the cache is 30 minutes which allows a mali-
cious actor to re-use the cached nonce for that timespan.

(2) CacheMisconfiguration on a Shared Software Platform:
While the numbers for Amazon, Cloudflare, and Akamai are
expected due to their high market share as seen in Table 3,
the presence of HURRICANE, US is rather surprising. This
autonomous system hosts the infrastructure and a CDN for
a popular discussion platform. We found a high number
of those forum instances to frequently serve reoccurring
nonces. This hints at a misconfiguration of a shared CDN,
which is used to serve their pages. This was indeed later
confirmed during our disclosure campaign.

(3) Incorrect Implementation: A tournament management
page of a gaming console vendor rotates or randomly selects
a nonce from a bucket of about six nonces. However, the
bucket seems to change every few days as observed by closer
manual inspection. Thus, attackers can gather those nonces
and opportunistically execute their attacks until it succeeds.
Per the CSP3 standard [41], CSP nonces are supposed to be
base64 values.The following two case studieswere found dur-
ing experiments with different encodings where we decoded

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

nonces and checked if they entirely consisted of printable
characters. Finally, we manually inspected all decodable and
printable nonces to check for predictable patterns.
A nonprofit organization that funds cardiovascular medical
research uses many different but fixed nonces that are their
name plus the use case of the individual script base64 en-
coded, e.g., $ABRphonevalidationnonce or $ABRrecaptcha-
verification. Given that those nonces are not changing at
all, and are all present in the CSP, an attacker can choose
one of them to perform attacks.
A Web site of a technology company with focus on cloud
and cybersecurity uses a base64 encoded fixed timestamp fol-
lowed by a newline (1616760559\n). This timestamp refers
to Fri Mar 26 2021 12:09:19 GMT, i.e, a timestamp well before
any of our experiments took place. Thus, this might either
be the time the nonce was created or it is created on appli-
cation or server startup. In either case, an attacker can just
look up the nonce and use it for attacks. On some pages of
their application, they instead use the base64 encoded string
nuxt-site7.9.0. In a GitHub issue9 of the nuxt-js reposi-
tory users describe their files being rebuilt upon deployment
to serverless Cloud functions. This changes their hash val-
ues which, however, have to already be included in the CSP
configuration during the deployment. Thus, the application
cannot be deployed with a valid CSP configuration. As a
workaround, users propose the use of a static nonce which
allows deploying a valid CSP, notably citing warnings about
the usage of unsafe-inline being discouraged. Obviously, the
use of a static nonce is semantically equivalent to relying on
unsafe-inline, yet CSP evaluation tools would likely not flag
this unsafe behavior.

5.2.3 Global vs. Local Caches. Many CDN providers also offer
globally distributed services that may share a cache. This section
investigates the prevalence of such globalized caches, as they pro-
vide fewer restrictions for potential attackers than localized caches.
Since we are using Python Requests instead of a real browser and
TOR proxies, some of our connections did not succeed due to bot
detection mechanisms or TOR connections being blocked. Thus,
we could only validate nonce re-usage on 57 sites. Out of these
sites, 42 (74%) sites had nonces that reoccurred on more than one
vantage point. This means that about a quarter of sites use localized
caches, so no nonces reoccurred on other vantage points. Such
localization is often based on IP geolocation [6]. In practice, this
is, however, not a hard restriction for an attacker since they can
use a VPN or proxy service with endpoints hitting the localized
cache to fetch the reoccurring nonce for an attack. For a successful
attack, the attacker now has to use the correct nonce that applies
to the victim. In many cases, the geolocation of a victim may be
estimated (e.g., localized attack distribution) or known before the
attack (e.g., targeted attack). Otherwise, an attacker can also use an
opportunistic approach with a lower success rate.

9https://github.com/nuxt/nuxt.js/issues/8646

AS Name Sites

AMAZON-02, US 66
CLOUDFLARENET, US 53
AMAZON-AES, US 29
FASTLY, US 26
AKAMAI-AS, US 22
MICROSOFT-CORP-MSN-AS-BLOCK, US 19

Table 5: Top six AS names for reoccurring anti-CSRF tokens

5.3 Anti-CSRF Tokens
In total, we found 1,058 distinct sites that used anti-CSRF token
names matching our constraints, from which 152 (14%) showed
reoccurring token values, and one domain where the value was a
static token. It is not unexpected that the majority of anti-CSRF
implementations distribute random tokens from the origin server as
most anti-CSRF tokens appear to be added by popular Web frame-
works. In addition, CSRF mitigations are common, as opposed to the
use of a CSP, such that most popular frameworks offer mitigations.

Out of the 152 sites with reoccurring values, only 17 sites did
not feature A records pointing to popular CDN providers. The
top five AS names for the domains are listed in Table 5. We thus
observe a connection between reoccurring anti-CSRF tokens and
CDN caching. Again, the AS name distribution matches the market
share discussed earlier.

Table 6 shows the distribution of token names for sites show-
ing reoccurring anti-CSRF tokens. While it roughly matches the
distribution outline in Table 1, the tokens used by ASP.NET Core
(__RequestVerificationToken) are far less prominent than other
token names relative to their initial distribution, as they do not
even appear in the top 5. We did not further investigate this phe-
nomenon but have observed differences in cache headers that may
indicate that the usage of caching middlewares10 is responsible for
this. ASP.NET Core features two middlewares that dynamically
inject cache headers to customize the caching behavior of HTTP
proxies and clients.

5.3.1 Case Studies: Anti-CSRF Token Reoccurence. Similar to Sec-
tion 5.2.2, we analyze notable exemplary cases representing issues
we encountered during our analysis in the following section.

10https://learn.microsoft.com/en-us/aspnet/core/performance/caching/overview

Token Name Sites

authenticity_token 84
csrfmiddlewaretoken 16
csrfKey 8
form_token 7
csrf_token 6

Table 6: Number of sites with reoccurring tokens that used a
certain anti-CSRF token name

https://github.com/nuxt/nuxt.js/issues/8646
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/overview

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

(1) CacheMisconfiguration on a Shared Software Platform:
While there is no significant outlier in the top AS names (Ta-
ble 5), the appearance of MICROSOFT-CORP-MSN-AS-BLOCK,
US in the top 6 is a bit surprising. We noticed the share
of .edu sites to be significantly higher than the respective
for other CDN providers (100%). In particular, all of these
.edu sites have reoccurring tokens on subdomains such as
events.example.edu or calendar.example.edu. They are
using the same calendar system that is using the authen-
ticity_token. Their deployment appears to consistently
be using the Microsoft Azure CDN while featuring some
mechanism to cache the front pages regardless of anti-CSRF
tokens.

(2) Incorrect Implementation: We found two cases of pre-
dictable anti-CSRF tokens. First, an error-monitoring tool
uses the current base64-encoded UNIX timestamp as a to-
ken at least on their account creation page. Thus, an at-
tacker can easily forge a token before performing the attack.
The second case is the Web presence of a US university,
which uses the current URL concatenated with the current
UNIX timestamp, prepended with a number between 7,200
and 7,800, and base64 encoded the resulting string. For ex-
ample, their “report a problem” page contains the base64-
encoded string equivalent of 7501#web-update/report-a-
problem/index.php#1651624778 as a token. Here an at-
tacker could perform the attack multiple times with all pos-
sible tokens and one of them will succeed as we only have a
small number of possible tokens. Further, a flight-tracking
Web application seems to deploy a token that only changes
once every day. The token is a nine-digit long number that
is not only used in form submissions but also in URLs that
are in the href attribute of an HTML anchor element. Thus,
an attacker can just get the current token (as it is not bound
to a session) and perform a CSRF attack.

5.3.2 Server-Side Behavior. For the server-side behavior in the case
of reused Anti-CSRF tokens, we distinguish three possible cases:

(1) Correct validation: Server-side caching will interfere with
a correct Anti-CSRF implementation as stale, reused or mis-
matching tokens will be rejected. Such a correct implemen-
tation may either be stateful (i.e., keeping server-side state)
or stateless (i.e., Double Submit Cookies). As a result, the
user experience will degrade as the first submission of a
form with a cached Anti-CSRF token will lead to the state-
changing action not being performed and the user being
displayed an error. This is however only the case when the
Synchronizer Token Pattern is used, as cached sites using
Double Submit Cookies will pass the stateless check unless
the tokens have an expiration date set. Only when the user is
served a fresh token from the origin server, the action will be
successfully performed in the Synchronizer Token Pattern.
The investigation of the effects of such error messages on the
user experience and the interaction with Web applications is
beyond the scope of this study, but may merit its own study.

(2) Lax validation: In this category, we consider validation
mechanisms that are not secure by default. This may be the
case when tokens are not associated with a user session.

An example of such an implementation would be anti-CSRF
tokens that may be used only once independent of the user.
Such a token leaves a time window for an attack. Similarly,
tokens may be valid for a restricted period of time. When not
associated with a concrete user session, such tokens again
open a time window for an attack. Additionally, this category
encapsulates mechanisms that only match a token format.

(3) Missing validation: Developers may add Anti-CSRF to-
kens to all forms especially since this does not come with
any overhead when using a framework that provides Anti-
CSRF measures. Such measures are however only required
if the form is behind authentication. Thus, removing token
validation for forms that do not behave differently for au-
thenticated users does not lead to any security drawbacks.

We investigated a random sample of 20 sites serving reoccurring
Anti-CSRF tokens for their server-side behavior. Since our crawl
is unauthenticated, we mostly found forms for newsletter signup,
account creation, search bar, and login. Out of these, only login
forms are relevant to our threat model. Thus, our random sample
only focuses on sites that case-insensitively feature the keyword
login or signin in the form action. In our random sample, we
observed three different behaviors.

Sites falling into the first behavior category displayed an error.
This is the expected behavior of sites correctly validating the Syn-
chronizer Token Pattern. In the case of login forms, this behavior
did not occur in our random sample. The investigation of security
irrelevant forms (e.g., newsletter signup), however, showed that
validation is a frequent on these forms. This may result from these
forms being of lesser interest than login forms such that cache
misconfigurations go unnoticed.

Sites of the second behavior category accepted any value for the
anti-CSRF token. This shows that the token was not validated at
all. We observed this behavior on seven sites. Some sites did not
even send the token along in their form submission, indicating the
detection of a false positive by our crawl. This was the case for one
site. In a likely scenario, a developer noticed that, for some reason,
most form submissions contained incorrect tokens. As a temporary
measure, the token validation might have been turned off. This is
an interesting scenario, as the misjudgment of a developer may
lead to the validation being disabled on a critical form requiring
anti-CSRF mitigations. As a prominent example, the calendar sys-
tem mentioned earlier does not validate the authenticity_token
on their login form. In addition, they appear not to be using any ad-
ditional mitigations such as checking the origin header. This allows
an attacker to perform a Login CSRF Attack [2].

Additionally, we encountered three forms that featured reoccur-
ring anti-CSRF tokens but were not vulnerable due to additional
mitigations being applied. In particular, we often encountered the
use of CAPTCHAs and were redirected to the next step of a multi-
part form where the initial form did not perform a state-changing
action. Here, the following parts of the form did not feature reoccur-
ring anti-CSRF tokens. Lastly, one site featured reoccurring tokens
used in the double submit cookie technique. This opens an attack
window as discussed in Section 3.2 should such a token reoccur.
We were not able to check the behavior for eight sites, as they

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

either changed their caching behavior (6) or no longer employed
anti-CSRF mitigations (2).

6 DISCUSSION
In this section, we give recommendations for the different stake-
holders on how to mitigate the issue of token re-usage. Moreover,
we describe our disclosure process and shed light on the limitations
and ethical considerations of our methodology.

6.1 Recommendations
The following section contains our list of recommendations for
different parties that may be involved in the deployment process of
a Web application.

6.1.1 For Web Operators. This work, as well as previous work on
Web Cache Deception [21, 22], highlight the danger of caching
dynamic content. Web operators should be aware of the security
implications of caching dynamic content. In addition, there should
be no disconnect between developers implementing security fea-
tures and Web operators managing the deployment of the features.
Some security features usually implemented on the server side can
also be added by Web operators. Cloudflare Workers for example
are a serverless execution environment that can be used to imple-
ment a secure CSP without generating random values on the origin
server11.

6.1.2 For Web Developers. A first possible approach to mitigating
over-eager caching of non-static sites would be to add caching
directives via the Cache-Control header to responses. In particular,
there even exist middlewares that dynamically inject cache headers
to customize the caching behavior of HTTP proxies and clients (e.g,
ASP.NET Core Caching Middlewares12). This effectively shifts some
of the responsibility resting on the shoulders of Web operators to
the developers. As a CDN may however ignore caching directives
from the origin server, usually after explicit configuration, this
approach does not completely mitigate the issue.

To mitigate the issues that arise from cached anti-CSRF tokens,
one could employ additional mitigation techniques on top of, or
instead of the token-based mechanisms. When using Double Submit
Cookies we recommend the usage of custom headers to transmit
the second value, as the protective effects of the Same-origin Policy
are now added to the protective effects of randomness.

6.1.3 For CDN Vendors. For both misconfigurations investigated
in our work, the CDN provider distribution of misconfigured sites
closely matches the actual market share of CDN providers. This
indicates that such misconfigurations are widespread and affect all
CDN providers equally.

To investigate the possibility of a misconfiguration, we con-
ducted a small case study using Cloudflare as an example. Here, we
used a node.js web application that replied with a random token in
the HTML of each HTTP response. Additionally, the application
also implements a CSP that features a randomly generated nonce
in each response. This application was deployed on a virtual pri-
vate server. Setting up Cloudflare as a CDN only required some
modifications of our DNS setup. After configuring the Cloudflare
11https://github.com/moveyourdigital/cloudflare-worker-csp-nonce
12https://learn.microsoft.com/en-us/aspnet/core/performance/caching/overview

nameservers as the authoritative nameservers for our domain, the
CDN was already proxying our traffic under the base configuration.
Afterwards, we are greeted with a short quickstart guide featuring
a few options to increase security and optimize performance. These
options however only address the use of TLS and compression. By
default, the Cloudflare CDN respects the cache directives of the
origin server added via the Cache-Control and the Expires header.
Additionally, it caches some file types depending on the file exten-
sion. Note that JS and CSS files are cached by default, while HTML
files are not. Furthermore, responses are not cached if they con-
tain the Set-Cookie header. The default behavior can be overwritten
using individual page rules. The documentation also states: “To
cache additional content […] create a rule to cache everything.” [7]
Creating such a rule will now also cache our CSP nonces and the
random tokens in the HTML. Furthermore, we can also instruct
our rules to ignore cache directives from the origin server. During
the configuration of such a rule, the operator is not facing security
warnings for either lacking randomness like we discuss or the pos-
sibility to introduce Web Cache Deception flaws. This is interesting
since other parts of the interface are very beginner friendly and
contain hints.

We therefore emphasize CDN providers should place more em-
phasis on the implications of caching dynamic content. The Cloud-
flare documentation contains a guide on best practices, which specif-
ically discusses Web Cache Poisoning [8]. It also mentions ways
to ensure dynamic content is not inadvertently cached. However,
as many may not read these parts of the documentation [38], we
believe the warnings should be placed next to options susceptible
to misconfiguration.

To further assist Web operators we would recommend a simple
check that is performed upon deployment or upon explicit request
of the Web operator. While it is difficult for CDN vendors to detect
anti-CSRF token caching due to the non-standardized implemen-
tation and naming conventions, this is trivial in the case of CSP
nonces. These checks would not have to cover the entire cache but
rather different subdomains or paths as CSPs are in most cases
(90%) deployed per origin [5].

6.1.4 For Browser Vendors. CHIPS (Cookies Having Independent
Partitioned State)13 is a proposal by the Privacy Community Group
of the World Wide Web Consortium (W3C) for a new cookie at-
tribute. This attribute, Partitioned, indicates that a cross-site
cookie should only be available in the same top-level context that
the cookie was first set in. Cookies used in the double submit cookie
technique could set this new attribute to prevent attackers from
performing state-changing requests using cookies set from attacker-
issued requests. This feature was shipped with Google Chrome
version 110.14 Other major browsers such as Mozilla’s Firefox have
also indicated a positive position regarding the standard 15.

Another thing that browser vendors could do to at least notify a
developer about the re-usage of security tokens such as nonces is to
remember the last N nonces that the browser has received from an
origin. This way they can easily detect re-usage of a nonce, and as
soon as they encounter this they can display a warning message in

13https://github.com/privacycg/CHIPS
14https://chromestatus.com/feature/5179189105786880
15https://github.com/mozilla/standards-positions/issues/678

https://github.com/moveyourdigital/cloudflare-worker-csp-nonce
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/overview
https://github.com/privacycg/CHIPS
https://chromestatus.com/feature/5179189105786880
https://github.com/mozilla/standards-positions/issues/678

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Trampert et al.

Figure 6: Error page shown by lego.com when accessed from
the Onion Network (TOR)

the developer console of the browser or even use the report feature
of CSP (if specified) to issue a report to the CSP endpoint in order
to notify the operator about the problem.

6.2 Ethical Considerations & Disclosure
Our crawling procedure is designed in a way that we only put the
minimum necessary load on the server, in order to not interfere
with the availability of the Web application.

To not send notifications to no longer affected parties, we per-
formed an additional revalidation step before notifying all affected
parties about the corresponding issue(s). In the revalidation step
before our disclosure, we could again confirm the reoccurrence of
security tokens on 71Web sites. We sent plaintext emails describing
the issue, implications, and methodology. As contacts, we chose the
security@ and webmaster@ addresses of the respective site since
these generic aliases performed adequately in research on large-
scale vulnerability notifications [37]. In case both mails could not
be delivered, we manually searched for a contact email/form. We
received 25 answers, while only nine of those were non-automated
responses. Out of these, four confirmed that the reported issues
are indeed related to CDN caches, while the remaining did not
comment on the underlying issue. In addition, one affected party
confirmed that the issue is with their shared hosting provider.

6.3 Limitations
We are limited by a variety of factors during our initial crawl and
the following initial analysis to find reoccurring tokens. Since our
crawl was automated, there is an unknown amount of sites that we
could not visit due to bot protection. Here, we could for example
have been presented with CAPTCHAs our automated approach
was unable to circumvent. We face a similar issue while validating
from vantage points proxied by TOR. Some sites, in our case nine,
block requests originating from the TOR network since regular
users are indistinguishable from automated traffic routed through
the network [28]. For example, lego.com return an ”Access Denied”
error page with the status code set to 403, as depicted in Figure 6.

This is even worsened by the fact that some sites do not send
the appropriate status codes when blocking requests and instead
just show a block page without an error code. Thus this part of the
discussion is not representative for the top 10k sites.

Another limitation of this work is the limited insight into actual
server behavior. While we attribute reoccurring security tokens
to a cache misconfiguration, the server-side implementation may
be the origin of the reoccurrance. Furthermore, there is no clear
statistical correlation between CDN usage and token reoccurrance.
This is due to the widespread usage of CDNs and also due to the
large number of sites where we did not observe a misconfiguration.

In addition, the vast majority of anti-CSRF tokens may well be in
parts of Web applications that is not accessible to unauthenticated
visitors, e.g., in fields related to account updates. Since there is no
reliable way of authenticating automated crawlers, this interesting
area remains unexplored.

Lastly, due to the non-standardized naming of anti-CSRF tokens,
our estimate of the issue is likely to be an under-approximation
since we filtered out ambiguous token names. Future work could
address this issue by using other indicators that hint at a certain
Web framework being used. Not only CDNs cache responses, but
also some Web frameworks and Web servers or proxies do so. Thus,
if a site for example used a custom caching via e.g., their nginx16,
we would not have detected this case as caching related although
it actually is caused by a server-side cache.

Roth et al. [30] have shown that CSP configurations change
frequently. Thus, some sites changed their CSP during our initial
crawl over between our crawling and validation phase. Thus, we
might have missed cases, because the usage of nonces in the CSP
changed throughout our experiment. As mentioned in Section 4.1
we dropped all anti-CSRF tokens that have empty value attributes,
because collecting them is error-prone. In either of the cases men-
tioned above, we might have missed multiple static tokens which
are dynamically added. However, as we aim to report a lower bound
of the problem, this does not interfere with the validity of our re-
sults.

7 CONCLUSION
In this work, we investigated the re-usage of security tokens in real-
world Web sites. Through our analysis of the 10k most popular Web
sites, we found that out of the 7,210 sites we reached, 446 sites use
CSPs that include nonces. However, 74 (16.5%) of them use nonces
that are reoccurring or even static. Also, 1,058 sites use Anti-CSRF
tokens in their Web applications. However, also here, we detected
reoccurring tokens on 152 (14%) sites. Moreover, we detected a
connection between reoccurring security tokens and the usage of
CDNs for caching. In fact, the majority (88% for nonces, 89% for
anti-CSRF) of reoccurring or static security tokens that we found
were present on Web sites that were likely served via a CDN. This
is also supported by an analysis of caching-related headers, which
indicated a cache-related issue in at least half of the investigated
cases. In addition, at least four operators of the affected Web sites
confirmed during our disclosure process that caching is the root
cause of this problem. To mitigate this issue, we outline several
mitigation techniques in order to fix this issue from the perspective
of the different stakeholders. Web site operators need to be aware
of the issues that caches can introduce and solutions like Cloudflare
Workers should be advertised more prominently for this use case.
Developers should carefully design their Cache-Control headers to
control the caching behavior of their CDN. But also CDN vendors
should work on easing the configuration of the caching behavior
to reduce misconfigurations, and browser vendors should try to
notify affected sites about the issue, such that the security header
can protect what they ought to protect.

16https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/

Honey, I Cached our Security Tokens
Re-usage of Security Tokens in the Wild RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

ACKNOWLEDGMENTS
We would like to thank all reviewers for their comments and ad-
vices on how we can further improve the presentation and read-
ability of our paper. This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) –
491039149. It was conducted in the scope of a dissertation at the
Saarbrücken Graduate School of Computer Science.

REFERENCES
[1] Adam Barth. 2011. RFC 6265: HTTP State Management Mechanism - Overview.

https://www.rfc-editor.org/rfc/rfc6265#section-3
[2] Adam Barth, Collin Jackson, and John C Mitchell. 2008. Robust defenses for cross-

site request forgery. InACM SIGSACConference on Computer and Communications
Security (CCS).

[3] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. 2019. Mitch: A machine learning approach to the black-box detection
of CSRF vulnerabilities. In IEEE European Symposium on Security and Privacy
(EuroS&P).

[4] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security
Problems?: Evaluating the effectiveness of Content Security Policy in the Wild.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).

[5] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben Stock.
2021. Reining in the web’s inconsistencies with site policy. In Network and
Distributed Systems Security Symposium (NDSS).

[6] Cloudflare. 2022. Cloudflare about the Cloudflare Network. Online @ cloud-
flare.com (2022).

[7] Cloudflare. 2022. Cloudflare Cache Documentation. Online @ developers.cloud-
flare.com (2022).

[8] Cloudflare. 2022. Cloudflare Documentation on Avoiding Web Cache Poisoning.
Online @ developers.cloudflare.com (2022).

[9] Cloudflare, Inc. 2022. What is a CDN? | How do CDNs work? Article. Online @
cloudflare.com (2022).

[10] Adam Doupé, Weidong Cui, Mariusz H Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. 2013. deDacota: Toward Preventing server-side
XSS via automatic Code and Data Separation. In ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[11] Ben Hayak. 2015. Same Origin Method Execution (SOME). Online @ ben-
hayak.com (2015).

[12] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z
Yang. 2013. mXSS Attacks: Attacking well-secured Web-Applications by using
innerHTML Mutations. In ACM Conference on Computer and Communications
Security (CCS).

[13] Intricately. 2020. CDN Industry: Trends, Size, AndMarket Share. Blog Post. Online
@ blog.intricately.com (2020).

[29]]jakobssonjavascript Markus Jakobsson, Zulfikar Ramzan, and Sid Stamm. [n. d.].
JavaScript Breaks Free. Online @ citeseerx.ist.psu.edu ([n. d.]).

[15] Ashar Javed and Jörg Schwenk. 2013. Towards Elimination of Cross-Site Scripting
onMobile Versions ofWeb Applications. In InternationalWorkshop on Information
Security Applications (WISA).

[16] Amit Klein. 2005. DOM Based Cross Site Scripting or XSS of the Third Kind.
Online @ webappsec.org (2005).

[17] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A Vela Nava, and
Martin Johns. 2017. Code-Reuse Attacks for the Web: Breaking Cross-Site Script-
ing Mitigations via Script Gadgets. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[18] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later: large-
scale detection of DOM-based XSS. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

[19] Xhelal Likaj, Soheil Khodayari, and Giancarlo Pellegrino. 2021. Where We Stand
(or Fall): An Analysis of CSRF Defenses in Web Frameworks. In Symposium on
Research in Attacks, Intrusions and Defenses (RAID).

[20] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia.
2018. Riding out domsday: Towards detecting and preventing dom cross-site
scripting. In Network and Distributed System Security Symposium (NDSS).

[21] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. 2020. Cached and Confused: Web Cache Deception in
the Wild. In USENIX Security Symposium (USENIX Security).

[22] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and Bruno
Crispo. 2022. Web Cache Deception Escalates. In USENIX Security Symposium
(USENIX Security).

[23] Open Web Application Security Project (OWASP). 2021. Top 10 Web Application
Security Risks. Online @ owasp.org (2021).

[24] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-box Enforcement of Content Security Policy upon real-
world Websites. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[25] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu,
and Prateek Saxena. 2015. DexterJS: robust testing platform for DOM-based XSS
vulnerabilities. In Joint Meeting on Foundations of Software Engineering (FSE).

[26] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. 2017. Deemon: Detecting CSRF with dynamic analysis and property
graphs. In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

[27] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2019. Tranco: A research-oriented top sites ranking
hardened against manipulation. In Network and Distributed Systems Security
Symposium (NDSS).

[28] The Tor Project. 2022. FAQ on Websites Blocking Tor. Online @ support.torpro-
ject.org (2022).

[29]]content-sniff-xss Phil Ringnalda. [n. d.]. Getting around IE’s MIME type man-
gling. http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-
type-mangling

[30] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies. InNetwork and Distributed Systems Security Symposium
(NDSS).

[31] Sebastian Roth, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti, and Ben Stock.
2022. The Security Lottery: Measuring Client-Side Web Security Inconsistencies.
In USENIX Security Symposium (USENIX Security).

[32] Sebastian Roth, Lea Gröber, Michael Backes, Katharina Krombholz, and Ben Stock.
2021. 12 Angry Developers – A Qualitative Study on Developers’ Struggles with
CSP. In Conference on Computer and Communications Security (CCS).

[33] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. 2010. FLAX:
Systematic Discovery of Client-side Validation Vulnerabilities in Rich Web Ap-
plications. In Network and Distributed Systems Symposium (NDSS).

[34] Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the Web
with Content Security Policy. In International Conference on World Wide Web
(WWW).

[35] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock. 2021. Who’s
Hosting the Block Party? Studying Third-Party Blockage of CSP and SRI. In
Network and Distributed Systems Security Symposium (NDSS).

[36] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
TrustThe Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild.. In Network and Distributed Systems Symposium (NDSS).

[37] Ben Stock, Giancarlo Pellegrino, Frank Li, Christian Rossow, and Michael Backes.
2018. Didn’t You Hear Me? - Towards More Successful Web Vulnerability Notifi-
cations. In NDSS.

[38] Brigit van Loggem. 2014. ’Nobody reads the documentation’: true or not?. In
Proceedings of ISIC: the information behaviour conference.

[39] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP is dead, long live CSP! On the insecurity ofwhitelists and the future of content
security policy. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[40] Michael Weissbacher, Tobias Lauinger, and William Robertson. 2014. Why is
CSP failing? Trends and challenges in CSP adoption. In International Workshop
on Recent Advances in Intrusion Detection (RAID).

[41] Mike West. 2021. CSP Level 3. W3C Standard. Online at w3.org (2021).

https://www.rfc-editor.org/rfc/rfc6265#section-3
https://www.cloudflare.com/network/
https://www.cloudflare.com/network/
https://developers.cloudflare.com/cache/about/default-cache-behavior/
https://developers.cloudflare.com/cache/about/default-cache-behavior/
https://developers.cloudflare.com/cache/best-practices/avoid-web-poisoning/
https://www.cloudflare.com/learning/cdn/what-is-a-cdn/
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
https://blog.intricately.com/cdn-industry-trends-market-share-customer-size
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://www.webappsec.org/projects/articles/071105.shtml
https://owasp.org/Top10/
https://support.torproject.org/tbb/website-blocking-tor/
https://support.torproject.org/tbb/website-blocking-tor/
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
https://www.w3.org/TR/CSP3/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Cross-Site Scripting and Content Security Policy
	2.2 Cross-Site Request Forgery
	2.3 Content Delivery Networks

	3 Threat Model
	3.1 Implications for CSP Nonces
	3.2 Implications for Anti-CSRF tokens

	4 Methodology
	4.1 Data Collection
	4.2 Analysis
	4.3 Validation
	4.4 Detecting CDN & Cache usage

	5 Results
	5.1 CDN Usage
	5.2 CSP Nonces
	5.3 Anti-CSRF Tokens

	6 Discussion
	6.1 Recommendations
	6.2 Ethical Considerations & Disclosure
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References

